9 research outputs found

    Time resolved scanning Kerr microscopy of hard disk writer structures with a multilayered yoke

    Get PDF
    The erratum is available in ORE at http://hdl.handle.net/10871/21966Partially built hard disk writer structures with a multilayered yoke formed from 4 repeats of a NiFe(∼1 nm)/CoFe(50 nm) bilayer were studied by time and vector resolved scanning Kerr microscopy. Dynamic images of the in-plane magnetization suggest an underlying closure domain equilibrium state. This state is found to be modified by application of a bias magnetic field and also during pulse cycling, leading to different magnetization rotation and relaxation behavior within the tip region. © 2013 AIP Publishing LLC.The authors gratefully acknowledge financial support from the Seagate Plan

    Erratum: “Time resolved scanning Kerr microscopy of hard disk writer structures with a multilayered yoke” [Appl. Phys. Lett. 102, 162407 (2013)]

    Get PDF
    This is the final version of the article. Available from the American Institute of Physics via the DOI in this record.The original article is in ORE at http://hdl.handle.net/10871/21958There is no abstract available for this articl

    Static and dynamic magnetic properties of densely packed magnetic nanowire arrays

    Get PDF
    PublishedJournal ArticleThe static and dynamic magnetic properties of magnetic nanowire arrays with high packing density (>0.4) and wire diameter much greater than the exchange length have been studied by static and time-resolved magneto-optical Kerr effect measurements and micromagnetic simulations. The nanowires were formed by electrodeposition within a nanoporous template such that their symmetry axes lay normal to the plane of the substrate. A quantitative and systematic investigation has been made of the static and dynamic properties of the array, which lie between the limiting cases of a single wire and a continuous ferromagnetic thin film. In particular, the competition between anisotropies associated with the shape of the individual nanowires and that of the array as a whole has been studied. Measured and simulated hysteresis loops are largely anhysteretic with zero remanence, and the micromagnetic configuration is such that the net magnetization vanishes in directions orthogonal to the applied field. Simulations of the remanent state reveal antiferromagnetic alignment of the magnetization in adjacent nanowires and the formation of vortex flux closure structures at the ends of each nanowire. The excitation spectra obtained from experiment and micromagnetic simulations are in qualitative agreement for magnetic fields applied both parallel and perpendicular to the axes of the nanowires. For the field parallel to the nanowire axes, there is also good quantitative agreement between experiment and simulation. The resonant frequencies are initially found to decrease as the applied field is increased from remanence. This is the result of a change of mode profile within the plane of the array from nonuniform to uniform as the ground state evolves with increasing applied field. Quantitative differences between experimental and simulated spectra are observed when the field is applied perpendicular to the nanowire axes. The dependence of the magnetic excitation spectra upon the array packing density is explored, and dispersion curves for spin waves propagating within the array parallel to the nanowire axis are presented. Finally, a tunneling of end modes through the middle region of the nanowires was observed. The tunneling is more efficient for wires forming densely packed arrays, as a result of the extended penetration of the dynamic demagnetizing fields into the middle of the wires and due to the lowering of the tunneling barrier by the static demagnetizing field of the array. © 2013 American Physical Society.The authors gratefully acknowledge the assistance of V.-A. Antohe and S. Tuilard with sample fabrication and M. Dvornik, M. Franchin, and H. Fangohr with micromagnetic simulations. The financial support from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreements No. 212257 MASTER (fabrication and experiment) and No. 233552 DYNAMAG (simulations) is gratefully acknowledged. We also gratefully acknowledge financial support from a UKIERI-DST standard research award (Grants No. SA 07-021 and No. DST/INT/UKIERI/SA/P- 2/2008) for travel between S. N. B. N. C. B. S., India, and the University of Exeter, United Kingdom. Finally, V.V.K. gratefully acknowledges funding received from the U.K. Engineering and Physical Sciences Research Council Project No. EP/E055087/1

    Static and dynamic magnetic properties of densely packed magnetic nanowire arrays

    No full text
    The static and dynamic magnetic properties of magnetic nanowire arrays with high packing density (>0.4) and wire diameter much greater than the exchange length have been studied by static and time-resolved magneto-optical Kerr effect measurements and micromagnetic simulations. The nanowires were formed by electrodeposition within a nanoporous template such that their symmetry axes lay normal to the plane of the substrate. A quantitative and systematic investigation has been made of the static and dynamic properties of the array, which lie between the limiting cases of a single wire and a continuous ferromagnetic thin film. In particular, the competition between anisotropies associated with the shape of the individual nanowires and that of the array as a whole has been studied. Measured and simulated hysteresis loops are largely anhysteretic with zero remanence, and the micromagnetic configuration is such that the net magnetization vanishes in directions orthogonal to the applied field. Simulations of the remanent state reveal antiferromagnetic alignment of the magnetization in adjacent nanowires and the formation of vortex flux closure structures at the ends of each nanowire. The excitation spectra obtained from experiment and micromagnetic simulations are in qualitative agreement for magnetic fields applied both parallel and perpendicular to the axes of the nanowires. For the field parallel to the nanowire axes, there is also good quantitative agreement between experiment and simulation. The resonant frequencies are initially found to decrease as the applied field is increased from remanence. This is the result of a change of mode profile within the plane of the array from nonuniform to uniform as the ground state evolves with increasing applied field. Quantitative differences between experimental and simulated spectra are observed when the field is applied perpendicular to the nanowire axes. The dependence of the magnetic excitation spectra upon the array packing density is explored, and dispersion curves for spin waves propagating within the array parallel to the nanowire axis are presented. Finally, a tunneling of end modes through the middle region of the nanowires was observed. The tunneling is more efficient for wires forming densely packed arrays, as a result of the extended penetration of the dynamic demagnetizing fields into the middle of the wires and due to the lowering of the tunneling barrier by the static demagnetizing field of the array
    corecore