13,697 research outputs found

    Attitude transfer assembly design for MAGSAT

    Get PDF
    A description is given of a design for an instrument system that will monitor the orientation of a boom-mounted vector magnetometer relative to the main spacecraft body. The attitude of the magnetometer is measured with respect to X and Z axes lateral to the boom length and also a twist axis around the boom center line. These measurements are made in a noncontact optical approach employing a three-axis autocollimator system mounted on the main body of the spacecraft with only passive elements (reflectors) located at the end of the 20-foot boom

    Studies of a Terawatt X-Ray Free-Electron Laser

    Get PDF
    The possibility of constructing terawatt (TW) x-ray free-electron lasers (FELs) has been discussed using novel superconducting helical undulators [5]. In this paper, we consider the conditions necessary for achieving powers in excess of 1 TW in a 1.5 {\AA} FEL using simulations with the MINERVA simulation code [7]. Steady-state simulations have been conducted using a variety of undulator and focusing configurations. In particular, strong focusing using FODO lattices is compared with the natural, weak focusing inherent in helical undulators. It is found that the most important requirement to reach TW powers is extreme transverse compression of the electron beam in a strong FODO lattice. The importance of extreme focusing of the electron beam in the production of TW power levels means that the undulator is not the prime driver for a TW FEL, and simulations are also described using planar undulators that reach near-TW power levels. In addition, TW power levels can be reached using pure self-amplified spontaneous emission (SASE) or with novel self-seeding configurations when such extreme focusing of the electron beam is applied.Comment: 10 pages, 12 figure

    An X-Ray Regenerative Amplifier Free-Electron Laser Using Diamond Pinhole MIrrors

    Get PDF
    Free-electron lasers (FELs) have been built ranging in wavelength from long-wavelength oscillators using partial wave guiding through ultraviolet through hard x-ray FELs that are either seeded or start from noise (SASE). Operation in the x-ray spectrum has relied on single-pass SASE due either to the lack of seed lasers or difficulties in the design of x-ray mirrors. However, recent developments in the production of diamond crystal Bragg reflectors point the way to the design of regenerative amplifiers (RAFELs) which are, essentially, low-Q x-ray free-electron laser oscillators (XFELOs) that out-couple a large fraction of the optical power on each pass. A RAFEL using a six-mirror resonator providing out-coupling of 90% or more through a pinhole in the first downstream mirror is proposed and analyzed using the MINERVA simulation code for the undulator interaction and the Optics Propagation Code (OPC) for the resonator. MINERVA/OPC has been used in the past to simulate infrared FEL oscillators. For the present purpose, OPC has been modified to treat Bragg reflection from diamond crystal mirrors. The six-mirror resonator design has been analyzed within the context of the LCLS-II beamline under construction at the Stanford Linear Accelerator Center and using the HXR undulator which is also to be installed on the LCLS-II beamline. Simulations have been run to optimize and characterize the properties of the RAFEL, and indicate that substantial powers are possible at the fundamental (3.05 keV) and third harmonic (9.15 keV).Comment: 9 pages, 14 figure

    Solutions without singularities in gauge theory of gravitation

    Full text link
    A de-Sitter gauge theory of the gravitational field is developed using a spherical symmetric Minkowski space-time as base manifold. The gravitational field is described by gauge potentials and the mathematical structure of the underlying space-time is not affected by physical events. The field equations are written and their solutions without singularities are obtained by imposing some constraints on the invariants of the model. An example of such a solution is given and its dependence on the cosmological constant is studied. A comparison with results obtained in General Relativity theory is also presented. Keywords: gauge theory, gravitation, singularity, computer algebraComment: 9 pages, no figure

    Boosted Decision Trees as an Alternative to Artificial Neural Networks for Particle Identification

    Full text link
    The efficacy of particle identification is compared using artificial neutral networks and boosted decision trees. The comparison is performed in the context of the MiniBooNE, an experiment at Fermilab searching for neutrino oscillations. Based on studies of Monte Carlo samples of simulated data, particle identification with boosting algorithms has better performance than that with artificial neural networks for the MiniBooNE experiment. Although the tests in this paper were for one experiment, it is expected that boosting algorithms will find wide application in physics.Comment: 6 pages, 5 figures; Accepted for publication in Nucl. Inst. & Meth.

    Systematic Exploration of the Neutrino Factory Parameter Space including Errors and Correlations

    Get PDF
    We discuss in a systematic way the extraction of neutrino masses, mixing angles and leptonic CP violation at neutrino factories. Compared to previous studies we put a special emphasis on improved statistical methods and on the multidimensional nature of the combined fits of the nu_e -> nu_mu, \bar nu_e -> \bar nu_mu appearance and nu_mu -> nu_mu, \bar nu_mu -> \bar nu_mu disappearance channels. Uncertainties of all involved parameters and statistical errors are included. We find previously ignored correlations in the multidimensional parameter space, leading to modifications in the physics reach, which amount in some cases to one order of magnitude. Including proper statistical errors we determine for all parameters the improved sensitivity limits for various baselines, beam energies, neutrino fluxes and detector masses. Our results allow a comparison of the physics potential for different choices of baseline and beam energy with regard to all involved parameters. In addition we discuss in more detail the problem of parameter degeneracies in measurements of delta_CP.Comment: 29 pages, 14 fugure

    Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems

    Full text link
    The operations drip and mate considered in (mem)brane computing resemble the operations cut and recombination well known from DNA computing. We here consider sets of vesicles with multisets of objects on their outside membrane interacting by drip and mate in two different setups: in test tube systems, the vesicles may pass from one tube to another one provided they fulfill specific constraints; in tissue-like P systems, the vesicles are immediately passed to specified cells after having undergone a drip or mate operation. In both variants, computational completeness can be obtained, yet with different constraints for the drip and mate operations

    The DVCS Measurement at HERA

    Full text link
    The recent results of the studies of Deeply Virtual Compton Scattering (DVCS) events at HERA are presented. The possibility offered by this process to gain information about skewed parton distributions (SPD) is emphasized.Comment: Talk given at New Trends in HERA Physics 2001, Ringberg Castle, Tegernsee, Germany, 17-22 Jun 2001, 13 pages, 10 figures, recent ZEUS data discussed, references update
    corecore