45,231 research outputs found
The metallicity of gamma-ray burst environments from high energy observations
Gamma-ray bursts (GRBs) and their early afterglows ionise their circumburst
material. Only high-energy spectroscopy therefore, allows examination of the
matter close to the burst itself. Soft X-ray absorption allows an estimate to
be made of the total column density in metals. The detection of the X-ray
afterglow can also be used to place a limit on the total gas column along the
line of sight based on the Compton scattering opacity. Such a limit would
enable, for the first time, the determination of lower limits on the
metallicity in the circumburst environments of GRBs. In this paper, we
determine the limits that can be placed on the total gas column density in the
vicinities of GRBs based on the Compton scattering. We simulate the effects of
Compton scattering on a collimated beam of high energy photons passing through
a shell of high column density material to determine the expected lightcurves,
luminosities, and spectra. We compare these predictions to observations, and
determine what limits can realistically be placed on the total gas column
density. The smearing out of pulses in the lightcurve from Compton scattering
is not likely to be observable, and its absence does not place strong
constraints on the Compton depth for GRBs. However, the distribution of
observed luminosities of bursts allows us to place statistical, model-dependent
limits that are typically <~1e25 cm^{-2} for less luminous bursts, and as low
as ~1e24 cm$^{-2} for the most luminous. Using the shape of the high-energy
broadband spectrum, however, in some favourable cases, limits as low as ~5e24
cm^{-2} can placed on individual bursts, implying metallicity lower limits from
X- and gamma-rays alone from 0 up to 0.01 Z/Zsun. At extremely high redshifts,
this limit would be at least 0.02 Z/Z_sun, enough to discriminate population
III from non-primordial GRBs.Comment: 4 pages, 4 figures, submitted to A&A letter
Tracing masses of ground-state light-quark mesons
We describe a symmetry-preserving calculation of the meson spectrum, which
combines a description of pion properties with reasonable estimates of the
masses of heavier light-quark mesons, including axial-vector states. The
kernels used in formulating the problem are essentially nonperturbative. They
incorporate effects of dynamical chiral symmetry breaking (DCSB) that were not
previously possible to express. Our analysis clarifies a causal connection
between DCSB and the splitting between vector and axial-vector mesons, and
exposes a key role played by the anomalous chromomagnetic moment of
dressed-quarks in forming the spectrum.Comment: 5 pages, 2 figures, 1 table. To appear in Phys. Rev. C (Rapid Comm.
Analytic solutions of the magnetic annihilation and reconnection problems. I. Planar flow profiles
The phenomena of steady-state magnetic annihilation and reconnection in the vicinity of magnetic nulls are considered. It is shown that reconnective solutions can be derived by superposing the velocity and magnetic fields of simple magnetic annihilation models. These solutions contain most of the previous models for magnetic merging and reconnection, as well as introducing several new solutions. The various magnetic dissipation mechanisms are classified by examining the scaling of the Ohmic diffusion rate with plasma resistivity. Reconnection solutions generally allow more favorable "fast" dissipation scalings than annihilation models. In particular, reconnection models involving the advection of planar field components have the potential to satisfy the severe energy release requirements of the solar flare. The present paper is mainly concerned with magnetic fields embedded in strictly planar flows—a discussion of the more complicated three-dimensional flow patterns is presented in Part II [Phys. Plasmas 4, 110 (1997)]
THE ECONOMIC AND ENVIRONMENTAL ASPECTS OF COLORADO'S GOLF INDUSTRY
Community/Rural/Urban Development, Environmental Economics and Policy,
Recommended from our members
Scientific drilling of the Boltysh impact crater, Ukraine
Introduction: The Boltysh crater has been known for several decades and was first drilled in the 1960s as part of a study of economic oil shale deposits. Unfortunately, the cores were not curated and have been lost. We have re-drilled the impact crater and have recovered a near continuous record of ~400 m of organicrich sediments together with 15 m of suevite
Recommended from our members
Organic geochemistry of the crater-fill sediments from Boltysh impact crater, Ukraine
The Boltysh impact crater, is a complex structure formed on the basement rocks of the Ukrainian shield which has been dated at 65.17±0.64 Ma [1]. The Boltysh crater has been know for several decades and was originally drilled in the 1960s-1980s in a study of economic oil shale deposits. Unfortunately, the cores were not curated and have been lost. However we have recently re-drilled the impact crater and have recovered a near continuous record of ~400 m of organic rich sediments deposited in a deep isolated lake which overlie the basement rocks spanning a period ~10 Ma. At 24km diameter, Boltysh will not have contributed substantially to the worldwide devastation at the end of the
Cretaceous. However, the precise age of the Boltysh impact relative to the Chicxulub impact and its location on a stable low lying coastal plain which allowed formation of the postimpact crater lake make it a particularly important locality. After the impact, the crater quickly filled with water in a short marine phase but returned to fresh water which persisted for >10Ma [2]. These strata contain a valuable record of Paleogene environmental change in central Europe, and one of very few terrestrial records of the KT event. This pre-eminent record of the Paleogene can help us to answer several related scientific questions including the relative age of Boltysh compared with Chicxulub, recovery from the impact, and later climate signals. The organic geochemistry and playnology indicate main inputs to be algal and higher plant within most of the core although there are some marked changes in inputs in some sections. A number of carbon isotope excursions are also present within the core which are currently being further investigated
Optical/IR studies of Be stars in NGC 6834 with emphasis on two specific stars
We present optical and infrared photometric and spectroscopic studies of two
Be stars in the 70--80-Myr-old open cluster NGC 6834. NGC 6834(1) has been
reported as a binary from speckle interferometric studies whereas NGC 6834(2)
may possibly be a gamma Cas-like variable. Infrared photometry and spectroscopy
from the United Kingdom Infrared Telescope (UKIRT), and optical data from
various facilities are combined with archival data to understand the nature of
these candidates. High signal-to-noise near-IR spectra obtained from UKIRT have
enabled us to study the optical depth effects in the hydrogen emission lines of
these stars. We have explored the spectral classification scheme based on the
intensity of emission lines in the and bands and contrasted it with the
conventional classification based on the intensity of hydrogen and helium
absorption lines. This work also presents hitherto unavailable UBV CCD
photometry of NGC 6834, from which the evolutionary state of the Be stars is
identified.Comment: Published in Research in Astronomy and Astrophysics, RAA 14 (2014)
1173-1192, 20 pages, 10 figure
Hall current effects in dynamic magnetic reconnection solutions
The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies cH>η where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular "separator" component in the magnetic field. Only if the stronger condition c2/H > η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c2/H > η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is "head-on" (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced
Slavnov-Taylor identities in Coulomb gauge Yang-Mills theory
The Slavnov-Taylor identities of Coulomb gauge Yang-Mills theory are derived
from the (standard, second order) functional formalism. It is shown how these
identities form closed sets from which one can in principle fully determine the
Green's functions involving the temporal component of the gauge field without
approximation, given appropriate input.Comment: 20 pages, no figure
Gamma-ray burst host galaxies and the link to star-formation
We briefly review the current status of the study of long-duration gamma-ray
burst (GRB) host galaxies. GRB host galaxies are mainly interesting to study
for two reasons: 1) they may help us understand where and when massive stars
were formed throughout cosmic history, and 2) the properties of host galaxies
and the localisation within the hosts where GRBs are formed may give essential
clues to the precise nature of the progenitors. The main current problem is to
understand to what degree GRBs are biased tracers of star formation. If GRBs
are only formed by low-metallicity stars, then their host galaxies will not
give a representative view of where stars are formed in the Universe (at least
not a low redshifts). On the other hand, if there is no dependency on
metallicity then the nature of the host galaxies leads to the perhaps
surprising conclusion that most stars are formed in dwarf galaxies. In order to
resolve this issue and to fully exploit the potential of GRBs as probes of
star-forming galaxies throughout the observable universe it is mandatory that a
complete sample of bursts with redshifts and host galaxy detections is built.Comment: 9 pages, 3 figures. To appear in the proceedings of the Eleventh
Marcel Grossmann Meeting on General Relativity, eds. H. Kleinert, R. T.
Jantzen & R. Ruffini, World Scientific, Singapore, 200
- …