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Analytic solutions of the magnetic annihilation and reconnection problems.
I. Planar flow profiles
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The phenomena of steady-state magnetic annihilation and reconnection in the vicinity of magnetic
nulls are considered. It is shown that reconnective solutions can be derived by superposing the
velocity and magnetic fields of simple magnetic annihilation models. These solutions contain most
of the previous models for magnetic merging and reconnection, as well as introducing several new
solutions. The various magnetic dissipation mechanisms are classified by examining the scaling of
the Ohmic diffusion rate with plasma resistivity. Reconnection solutions generally allow more
favorable “fast” dissipation scalings than annihilation models. In particular, reconnection models
involving the advection of planar field components have the potential to satisfy the severe energy
release requirements of the solar flare. The present paper is mainly concerned with magnetic fields
embedded in strictly planar flows—a discussion of the more complicated three-dimensional flow
patterns is presented in Part[IPhys. Plasmad, 110 (1997]. © 1997 American Institute of
Physics[S1070-664X97)03001-3

I. INTRODUCTION pendently, or as some negative power, of the plasma resis-
. o . tivity. Existing two-dimensiona(2-D) and three-dimensional
Magnetic reconnection is thought to be responsible for3_p) models suggest that extremely large external pressures
the explosive energy release observed in solar flares, 10kaye required to contain magnetically intense, flux pile-up re-

mak disruptions and magnetic substorms in the geomagnetigang close to the neutral point. A key question is whether

tail. In such phenomena complicated magnetic field strucagt reconnection solutions can be found which alleviate this
tures undergo a global simplification as fieldlines are cut a”@iiﬁiculty.

rejoined at magnetic null points. The released magnetic en-  1ha aim of this paper, and its companion paper, Watson

ergy is converted into either the kin_eti.c energy of ejected, g Craig® hereafter referred to as Part II, is to develop
plasma or the thermal energy of resistively heated gas. Afyagnetic  annihilation/reconnection solutions within the
important theore_'ucal problem is reconciling thg ?XPIOS'Veframework of incompressible, steady-state MHD, and to as-
collapse of the field with the extremely low resistivities of gogs their possibilities as fast energy dissipation mechanisms.
typical plasmas. , , Although we recognize that a catastrophic event like a solar
~As the magnetohydrodynami@MHD) equations are fare will involve a breakdown of the fluid approximation,
highly nonlinear, the chances of finding an analytic descripyye \ould argue that the MHD collapse to small length scales

tion of reconnection seem remote. Accordingly, semi-p.q\ides a necessary precursor to rapid energy release. We

analytic or numerical approaches have traditionally been thBegin by considering only the simplest inviscid magnetic an-
preferred methods of obtaining solutions. Heuristic semi-

, _ _ ition: C SEMipjhilation solutions’™® but show, by means of a general su-
analytic solutions can certainly provide important insightsyehosition argument, that these can be developed into fully
into the problem, but their validity is always questionable. At

reconnective models. In particular, we recover the reconnec-

first sight' numerical simulatior_ls seem 1o provide. the Onlytion solution of Craig and Hento!, hereafter referred to as
self-consistent means of tackling the apparently mtractabl%H’ as well as generating several new quasi-steady recon-
equations. Typical simulatiohdiowever, are limited by un- nection models.

realistic resistivities and the implementation of sensible |, sec. |1 we introduce the MHD equations and describe

boundary 2 conditions—particularly in  “open” planar o+ annroach to developing analytic solutions. Only planar

geometries. , , flows are considered in this paper and there are three families
Motivated by these considerations, there has been a res; so|ytions to discuss, each one given by setting a different

cent surge in the search for an analytic description of magzomponent of the flow to zero. These solutions are analyzed
netic merging. Recent studie$ have generalized the well i, getail in Secs. I1l, IV and V. Our conclusions are summa-
known magnetic annihilation solutions based on &msatz  i-o4 in Sec. V.

of stagnation point flo:® More significantly it has been
shown that exact families of reconnection solutions can be

constructed in both two and three dimensidhs? These

display the essential characteristics of “fast” energy

release—specifically, the collapse of the field to small Iength“' THE BASIC EQUATIONS
scales as required by an Ohmic heating rate that scales inde- Tp¢ equations that govern the behavior of a magnetized

incompressible fluid can be written in the following non-
dElectronic mail: pgwatson@hoiho.math.waikato.ac.nz dimensional form:
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ov
E+(V~V)V= —Vp+(VXB)XB,

0B
E:V x (VXB)+ 7V?B,

V.-B=0, V-v=0,

To understand the severity of this constraint we first note
that 77, is conveniently calibrated using the coronal mag-
netic energy(B2/8x) divided by the coronal Alfve time
a=Lc/va. For the typical speed,=10°cm/s,74=10 s,
and so7", is measured in units of #®ergs per second. It
follows that77”,, for a typical coronal resistivityy= 7. must
be of order 10g to achieve an output power comparable to a

where the equations have been non-dimensionalized with rdlare. In particular, forp,=10"*2 we obtain the severe re-
spect to typica| coronal parameters by Sca"ng |engths with g]uwement that the dimensionless current must build up to the

length-scalel ., magnetic fields with the background field
strength B., velocities with the Alfve speed v,
=B./(87p)Y? time with the Alfven travel time 7,
=L /v, and gas pressure witB§/87r. The dimensionless
resistivity, », is given by

g vale Rp’
where 7 is the physical resistivityR, is the magnetic Rey-
nolds number an, = v/v, is the Alfven Mach number.

It is clear that the MHD system is invariant to translations
and rotations of the coordinate system.

The gas pressure can be removed from this system d
equations by taking the curl of the equation of motion, to

give
Jm
E+(v~V)w—(w~V)v=(B~ V)J—(J3-V)B,

whereJ= V XB is the electric current aneb=V Xv is the

level (J%)~10°.

B. Magnetic annihilation solutions

We begin by presenting steady-state magnetic annihila-
tion solutions in which anti-parallel fields are swept together
by the flow. Reconnection solutions are then constructed
from annihilation models by invoking the method of Sec.
II C. Although the annihilation of the magnetic field embed-
ded in planar flows has been well studied by a number of
previous authors;°we feel it is important to re-cap the vari-
us solutions here, as they provide the basis for our recon-
nection solutions—we also emphasize some difficulties asso-
ciated with these solutions.

Specializing to the case of one component fields, with
the field directed in the-direction, the conditioriv-B=0
implies that the field must be of the forB=2Z(x,y)z. We
make the further simplification th& is independent of, so

L . . ; at
vorticity. Assuming a plausible solution has been constructeéh

for the magnetic and velocity fields, the gas pressure distri-

bution is determined from the primitiveuincurled form of
the momentum equation.

A. The rate of resistive energy dissipation

The MHD system described above is conservative aparﬁ1

B=[0,0,Z(x)].

Note that for this type of field® - V)J—(J - V)B=0.

What types of flow can maintain this magnetic field
against resistive diffusion? To retain as much generality as
ossible we initially make no assumptions about the form of
the flow and take

from resistive energy losses. The global energy of the fluid is

dissipated at the rate

7 ,=(nd?)= nf J2dv,

and unless very large currents are set up this rate is physi-

v=[U(x,y,2),V(x,y,2),W(X,Y,2)].

The three equations we must satisfy are the steady-state
momentum equation,

cally negligible in typical coronal plasmas. This is a conse-ine induction equation

guence of the smallness of the resistivity—is typically

0O(10™*? in collision dominated gases. The upshot is that

the magnetic field must possess very small length scales

the currents are to be large enough to dissipate a significant

amount of energy. Although plasma instabilities can raise the

(V-V)o— (- V)v=(B-V)JI—(J-V)B, (1)
(v-V)B—(B-V)v=7V?B, 2
Hnd the continuity equation,
V.v=0. 3

effective collision frequency, causing enhancements in th&n substituting fov andB into Egs.(1)—(3) one finds that

resistivity by factors exceeding 1Gsee Parket! p. 783,

v must be of the form

small length scales are still necessary for appreciable energy

release.

v=[—a(x),b(x)y+f(x),c(x)z+g(x,y)], 4

The most severe constraints on the Ohmic dissipationvherea’ (x) —b(x)—c(x)=0, while the functionz(x) must
rate are provided by the solar flare. Consider a coronal fieldatisfy

of strengthB.=100 G occupying the volum¥= Lg where
L.=10%°cm. Then a modest reduction in the field of a few

nZ"+a(x)Z' +c(X)Z=0. (5)

Gauss is sufficient to produce a typical flare energy of sayAllowable forms for the functions,b,c,f,g must be deter-

10?° to 10°° ergs. This energy is liberated within a few hun-

mined from the momentum equation. Note, in agreement

dred seconds and so the power output must averaffetd0 with Phan and Sonnerdjthat it is not necessary to make the

10?8 ergs per second.
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C. Constructing reconnection solutions lll. DISSIPATION OF PLANAR FIELD COMPONENTS:

In what follows we exploit the fact that fields defined by FLOWS WITH V=0

magnetic annihilation models can be used as prototypes iA. Annihilation solutions

the construction of magnetic reconnectiqn solutions. Noting  \when they-component of the flow vanishes one must
the remarkable symmetry betweerandB in Egs. (1) and

(2—a symmetry broken only by the resistive diffusion

term—we assume reconnection solutions of the form v=[—-a(x), 0, a'(x)z+g(x,y)], (8)

V=V,+\B,, in order to support an annihilation solution wiB¥ Z(x)z.
(6) Equation(5) shows thag(x,y) has no influence on the mag-
B=Av,+Ba, netic field—it merely represents distortions of the basic
—9 .

wherev, andB, are the velocity and magnetic fields of the background flow™ dictated by a(x)—and so we set

annihilation solution and is a constant. g(x,y)=0 in what follows. Substituting the expression for
Substituting these forms into Eq&l)—(3) we find that v into the momentum equation implies that

the momentum and continuity equations are automatically 5/57=g4". 9

satisfied, while the induction equation yields

This equation has solutions of the form
(1_)\2){(Va V)Ba—(Ba - V)Vvg}= UVZBa+)\77V2Va-

(7) a X+ ag,
This equation can be satisfied by an annihilation solution — g(x)={ @1 SiN(kx)+ao cogkx), (10)
with a new effective velocity given by (£\?)v,, provided a; sinh(kx) + aq coshikx),

V2v, = 0. As we will see, solutions that meet this constraint

do exist, and because of the added complexity of their flow{yherek is a constant, so that there are three allowable types
field topology they allow for the possibility of magnetic re- of flow. The parameter, can be set to zero by suitably
connection. relabelling the axes.

Suppose however, th&tv, does not vanish identically. The magnetic field componeB(x) is determined by the
If the annihilation velocity fieldv, contains only global equation
length scales then the offending term makes only a negligible ,
O(#) contribution to the induction equation. Neglecting this nZ'+a(x)Z=Eo, (12)
term yields a model which, although not formally exact, canwhere E, is a constant that can be identified with the
be regarded as a quasi-steady reconnection solution for af-component of the background electric field. Solutions for
practical purposes since any evolution of the quasi-steady(x) can always be expressed in quadrature form by defining
solution only occurs very slowly, on the time scate .

Finally, we mention another interpretation of the recon- H+(x)=ex;{ iifxa(u)du
nection solutions: they can be thought of as describing the n
non-linear disturbance of some quiescent equilibrium—aryng writing
interpretation central to CH. Specifically, we regard the field
componentsvy=\Z(x)z and By=Z(x)Z as being super- Z(x)=EH‘(x)fXH+(u)du.
posed onto the background quiescent solutigp=v,, 7

Bq:)\Vaf A" flows in the background field are cqnstrained This form describes the flux pile-up annihilation solutions
to the fieldlines but departures from potential fiéldare ?iscussed at length in the literatre
0

possible, at least for quasi-steady solutions. A key feature In the case of the linear flow profile the solution can be

the reconnection analysis is that the superposed “diSplaceéxpressed in terms of known functiofsee CH. We intro-
ment field” can be normalized relative to the background .« the Dawson functid '

field in any convenient manner. This freedom is exploited in
Sec. Il D.

X

daw(x) = fo exp(t?—x?)dt, (12
D. The family of models which increases ax—2x33 for small x, peaks when

Our basic aim is to demonstrate that simple, global vedaw(x)=0.541 atx = 0.924, before declining monotoni-
locity fields can naturally support localized resistive dissipa-cally, as 1/(X), for largex.
tion in the fluid. Since we restrict our attention to purely ~ The general form of the linear flow is
planar flows it is natural to classify solutions in terms of v=[-ax,0 ,az] (13)
whether planar or non-planar field components are advected T
by the flow. In fact we shall see that it is only planar com-and the solution of11) in this case is given by
ponents which are magnified by advection towards the neu- Eo
tral line—and which can lead to fast reconnection solutions.  Z(x)= —dawux)+ C; exp — u?x?), 14
We begin therefore by reviewing annihilation solutions in e
which fieldlines, lying in the plane of the flow, are swept whereu?=a/(27). This linear velocity pattern represents a
together into the current layer. stagnation point flow in th&-z plane.
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scales as; 1. These scalings imply that the Ohmic heating
rate,

7= m(I%)=nIgdVs=0(n ), (16)

is fast for this type of annihilation solution. The same behav-
ior for solutions with trigonometric and hyperbolic flow pro-
files can be deduced from numerical computations. Thus we
conclude that this family of models achieves a fast energy
release by allowing the magnetic field to “pile-up” into thin
sheets on either side of the magnetic null point.

There is however, a major difficulty with such flux
pile-up solutions. The gas pressure is given by

Z(x)

1 1
pP=po— E(a2+a’222+22)+§aa”22. (17

It follows that since|Z| scales asy %2, the background
pressurep,, must scale ag ! to avoid non-physical nega-
X tive pressures. Thus the super-fast dissipation rate is
achieved at the cost of building up unphysically large pres-
FIG. 1. Plots of magnetic field(x) versus for the case of the annihilation  SUreés within the annihilation region. Obviously, it makes
of planar field components. Solutions are for the parameterrset 1, k  little physical sense fop, to exceed the external hydromag-
= 3, » = 0.01 and the three different velocity profiles: lindar), trigo- netic pressures that power the merging process—say, the

nometric(---) and hyperboliod— — 5. These antisymmetric solutions have . . . .
been scaled to have the same peak magnetic field in the sheet near the nm.agnetoconvecuon pressures associated with phOtOSphel’IC

The magnetic fields for both the linear and hyperbolic flows decay mono-SUNSpPoOt motions. And sincp, essentially determines the
tonically near the outer boundary, while the solution for the trigonometricpressure on the boundary it appears difficult to recorzailg
flow starts to increase again for this valuekof of these solutions with a low-beta coronal plasma in the far
field.
These objections can be countered to some extent by

Solutions for the smuso.|dal and hyperbolic flpw pattem.spostulating that the solution is sandwiched between magneti-
must be determined numerically. Although the trigonometric

luti be fund tallv differérftom the other t cally dominant external boundary regions which lie outside
solution can be fundamentally dimerentom e oter o .0 o connection region. Some support for this notion is pro-
flows if k > 4, as it then has multiple stagnation points, we

: . SN vided by the sinusoidal velocity solution, which shows that
restrict our attention to the cage<< 7 for simplicity.

. D . we are free to choose a wave numkee 7 that allowsZ to
Figure 1 compares the magnetic fields for the three dif, g

f £t £ infl file. Althouah the behavi £ th build up on the outer boundary. Such a solution is shown by
erent types of intlow profile. Although the behavior ot I o yoeq curve in Fig. 1. We see that low pressure coronal
magnetic field in the outer region may differ, it is clear that

. . e L conditions can now be approximated in the far field at the
the field in the vicinity of the origin is similar for all three bp

. o . cost of introducing a strong dissipation region at the outer
flows. In each case the inner field is confined to strong Sheegoundary. In fact the outer boundary current, as indicated by
on either side of the magnetic null, as expected for flu '

Xtae steep gradient i, is directly comparable in strength to

pile-up solutions. Note th.at these solutions have been scal e central current sheet. Of course, the extreme pressure
to have the same peak field in the sheet for the purposes Qhriations within the reconnection region remain.

comparison. To determine how each solution scales with re- '\, " .01 de that flux pile-up annihilation solutions, al-

SIS'FIVIty we_must fix the value of the field at the boundarythough formally fast, generally run up against severe physi-

while allowing 7 to vary. cal difficulties. An encouraging feature of the reconnection
solutions described below is that the pressure problem can be

B. Are fast annihilation solutions possible? overcome far more naturally without compromising the fast

To investigate whether fast dissipation is possible wediSsipation rate.
first consider the Dawson function solution under the tradi-
tional flow symmetries, that i€,;=0. The behavior of the
Dawson function for large arguments implies thatc. Reconnection solutions
Z(1)=Ey/a as n—0. This means that the constaht, ) ) ) »
which provides a measure of the flux annihilation rate, can !N the case of the linear velocity profile the superposition
be chosen independently af by fixing the magnetic field method of Sec. I C yields the exact solution
strength at the boundaries. The maximum field strength in  y=[—ax, 0, az+\Z(x)],
the sheetZ,, which occurs atxs=0.924/2 7/« scales as

7~ 2 while the current density, which is proportional to B=[—\ax, 0, Naz+Z(x)], (18
Eo Eo — —2,2
Z’=7{1—2,ux daw(ux)}, (15 Z(x)=n—M—daV\(Mx)+C1exp(—M X7),
104 Phys. Plasmas, Vol. 4, No. 1, January 1997 P. G. Watson and I. J. D. Craig
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Velocity Profile Magnetic Field
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FIG. 2. Contour plots of streamlines and magnetic fieldlines for the superposed trigonometric flow solutien=with k = 3, » = 0.01,E, = 0.1 and

N = 0.5. This solution has a strong current sheet contiguous with the plan@, which is a separatrix for both the flow and the field. The other separatrices

for the velocity and magnetic fields do not coincide. Notice in particular that there is flow across the curved magnetic field separatrix, a clear signature that
magnetic reconnection is occurring.

wheren=/(1—\?) a/(27). An alternate derivation and de- quirement that the displacement velocity field magnitude—
tailed analysis of solutiofil8) is given by CH. A new fea- which is absent in the pure annihilation solution—must be

ture of the present analysis however, is that highly accuratbounded by the speed of light

guasi-steady reconnection solutions can also be deduced for The basic idea is illustrated in Fig. 3. The amplitude of

the sinusoidal and hyperbolic flow profiles, providéd the disturbance field on the outer boundary is chosen small
< 0(n™ 9.

A superposed solution with a sinusoidal inflow profile is
shown in Fig. 2. The fact that there is flow across the curving
separatrix of the field—the separatrix not contiguous with
the current layer—confirms the solution as reconnective.
This is also reflected by the presence of strong shearing mo-
tions across the current layer. These features are not re-
stricted to sinusoidal flow solutions: they are generic to all
three flow profiles.

| B

D. Solution scalings with plasma resistivity

Although the reconnection solutions scale in exactly the
same way as the annihilation models, they can be given a
completely different physical interpretation, as discussed in
Sec. Il C. Specifically, to avoid unbounded Ohmic dissipa-
tion losses in the limit of small, we identify vy=\Z(x)z
andBy=2Z(x)z as disturbance fields superposed on the qui- e : il il
gscent splutiowq=va, By=AV,. Since the plasma pressure 0.0 0.2 0.4 0.6 0.8 1.0
is now given by

~\2

1 A
— _ a2 1252 2 - "2 _ ’
P=Po 2 (@+a’ "2+ Z%+ 2 aa'z’-\a'zz, FIG. 3. A plot of the magnitude of the magnetic field along xhaxis for a
(19 superposed solution with a hyperbolic velocity inflow profile. The solid line
gives the total magnitude of the field, while the dashed and dotted lines

we assume that the pressure of the disturbance Héid represent the contributions from the disturbance figldand the quiescent
cannot overwhelm the background field contribution _background fieldkfva, respectively. The amplitud_e of the _distur_bance field
Bq:)\va- In practice, this is tantamount to bounding the is completely arbitrary, but we argue from physical considerations that the
field Z. in the sheet at a | | det ined by the distant field pressure forces gen_erated in the shget cannot grea_tly exceed the force_s on
Ield £g In the sheet at a level aetermined Dy the distant Ti€ldthe phoundary that drive the reconnection process. This suggests that the field

That Zg must eventually saturate also follows from the re-in the sheetz,, must be limited by the field, on the boundary.
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enough so that the flux pile-up layer is no longer more in-Solutions for the three possible choicesagk) are shown in
tense magnetically than the “far field” on the boundariesFig. 4.
x==*+1 that sandwich the reconnection region. In other If we assume a linear flow profile the magnetic field is
words, in recognition of the fact that magnetoconvectivemaintained by a flow of the generic form
footpoint forces ultimately drive the reconnection, we take v=[ - ax,ay.0] 23)
|Z4| to be bounded by the magnitufi&,| of the photospheric AR
field at the boundary. The Ohmic power output, namely ~ wherea is a constant. This velocity profile now represents a
Po= 7(3%) = 1 2dVe= n 22 2, 20 (sg)gr:ﬁ;;r:]gvslgtefwmtlenntgg y plane. The solution of Eq.
where 7. is the coronal resistivity, then builds up only until _
the sheet field strengths approache¥,. SinceZs cannot Z2(x)=Caerf(px)+Co, 24
exceedZ,, the maximum dissipation rate saturates at the limitsee Besseret al.® where the constaniu is given by
Po=7c"?Z5 The pressure is now bounded by the limit u?=al(27n) andC; andC, are determined by the magnetic
p~ZS/2 and so the unphysica| gas pressure distribution 0f|e|d on the boundariex = =1. Traditional annihilation
the annihilation model is avoided. solutions model the merging of perfectly anti-parallel fields,
It is important to ask whether the pressure problem hagvhich would imply Z(0) = 0, but this symmetry can be
been overcome at the drastic cost of making the solutiofproken if the constan€, is non-zero.
“slow.” In fact, the solution remains fast provided the level
of the disturbances are small enough to maintain the limi
Zs~Z,. The question is really whether the limiting Ohmic A second class of solutions can be constructed by per-
dissipation rateP,= 7.*?Z,? is sufficient to power a flare. forming the superposition given i#6). For the linear flow we
Taking Z,=10""—which corresponds to a photospheric find that
field of order 3000 G—yield®,=0(10 %) which, as dis-
cussed in Sec. Il B, is quite sufficient to power a sizable
event. The extreme conditions of the flare are now reflected B=[—\ax,\ay,Z(X)], (25)
in the large displacement velocities—at 3f) these are now _
approaching an appreciable fraction of the speed of light Z(x)=Cqerf(ux)+Cy,
These conditions are significantly eased howeverydfis  where u=(1—\?)a/(27) provides an exact solution to
enhanced by micro-instabilities in the sheet. A modest inthe MHD equations as the conditidfPv, = 0 is satisfied.
crease, say by a factor of 4amplies thatZ of order unity  As before, the trigonometric and hyperbolic profiles lead to
is quite sufficient for a moderate flare. Thus the model apnew solutions in the sense of Sec. Il C. The key point is
pears feasible even assuming fairly conservative saturatiofhat—unlike the superposed solutions of Sec. Ill B—none of
limits. these solutions allow flow across the separatrices of the mag-
Finally we mention an apparent difficulty that arises with netic field, and hence they are not reconnective. Specifically,
the reconnectiortand annihilatioh solutions if we consider sincez is an ignorable coordinate in the present solutions,
solutions that deviate from perfect anti-symmetry. In thisonly planar reconnection can occur—and this can be over-
case it appears that the magnetic field should scale accordirgled by noting that the streamlines and fieldlines coincide

to [Zs| = Cy ~ exp(1/y). We will show in Part Il however, when they are projected onto planes of constant
that this unphysical behavior is an artifact of imposing strict

{3. Superposed solutions

v=[—aX,ay,NZ(X)],

two-dimensionality on the flow. C. Solution scalings with plasma resistivity

We examine the superposed solution with the linear flow
IV. DISSIPATION OF NORMAL FIELD COMPONENTS: profile first, as its scalings can be determined analytically.
FLOWS WITH W=0 Equation(25) shows that the magnetic field is uniform out-
A. Annihilation solutions side the diffusion region. Therefodg scales as;” 2, which

: N .__implies the slow heating rate,
We now consider a second class of annihilation solutions

formed by setting=0 in the expression for the velocity V= n(3%)=1I2dV=0(7n*?. (26)

profile, Eq.(4). The flow now has the form This behavior in fact accords with the traditional slow

v=[—a(x),a’(x)y+f(x),0], (21 Sweet—Parker scaling. But whereas the approximate Sweet—

. . Parker model describes the annihilation of planar field, this
wheref(x) can once again be set to zero as it only represents _, .. : . RN
: : ; Solution provides an exact solution for the dissipation of nor-

a distortion of the basic flow pattern that does not affect the : : . i
o X . mal field components. Numerical simulations reveal that the
magnetic field. To satisfy the momentum equation the func-

tion a(x) must obey the relation’a” =aa”. This equation Ohmic heating rates for the trigonometric and hyperbolic

. X . flow solutions(both annihilation and superposeobey ex-

is the same as that covered by the discussion of Sec. lll A ( . perpos yex

o : . . . actly the same scaling law, so they too are slow dissipation

and one obtains linear, sinusoidal and hyperbolic profiles for .

. . . ) : .~ solutions.
the inflow a(x). Turning to the induction equation, we find

o . . The absence of flux pile-up in these solutions—i.e.
that the magnetic field componez{x) is determined by 1Z]m= O(1)—shows  that [t)herepis no difficulty with the

nZ"+a(x)Z'=0. (22 pressure profile,
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where we have dropped the subscript@nThis type of flow

15 T T T gives rise to a magnetic field componét{ix) that must sat-
' isfy
nZ"—BZ=0. (31
Equation (31) implies that there are three allowable field
configurations,
/;? C1X+ Cz y B: 0,
N

Z(x)=4 Cy sin(ux)+C, cofux), B<O0, (32
C, sinnux)+C, coshiux), B>0,

where u=+/|B|/5. Since only the trigonometric solution
possesses field and current structures that are localized in the
interior of the domain ag — 0, we restrict our attention to
-15 ) , . this case.

10 ~05 0.0 0.5 10 The structure Qf this solution is somewhat unusual. The
flow, which is confined to thg-z plane, supports a magnetic
field B = Z(x)z that varies in thex direction. In any given
FIG. 4. Plots of the magnetic field(x) versusx for the annihilation of the plane ofx the magnetic_: field i-S uniform, while the flpw e
norr'nai field component. Plots for the three different velocity profiles, Iinearsemk_)les_a 2D S_tagnatlo_n p‘?'”t flow. One separ_atrlx Of_the
(—), trigonometric (-+-) and hyperbolic(— — -) are shown. These anti- flOW is aligned with the direction of the magnetic field, while
symmetric solutions were generated with the parameteraset, k=3, the orientation of the other is determined by the value of
7=0.05 and the bounda_ry gOI’ld.itiOﬁfO). = O_andZ(_l_) = 1. Clearly the h(x)_the Separatrices are 0rthogona| WHE(lX) =0.
structure of the magnetic field is relatively insensitive to the form of the The role of thex-axis has also changed for this solution.

inflow profle In the previous two sections thxeaxis represented the inflow
direction as well as the direction in which the field varied.
1 —\2 Although it is still true that the field varies in this direction,
pP=po— E(a2+ a'?y?+7%)+ Taa”yz, (27 the inflow direction is now along thg-axis (remembeig is

negative. This implies that there are fine scale field varia-
where a(x) corresponds to any one of the allowable flow tions on the inflow boundarieg = *=1.
profiles given in (10). It is clear that normal field
components—unlike planar components—are not amplified

by advection into the current layer. B. Superposed solutions

V. DISSIPATION OF TRANSVERSELY VARYING Another exact solution can be developed by means of
FfELDS: FLOWS WITH U=0 the usual superposition procedure, which yields
A. Annihilation solutions v=[0,— By,fz+h(x)y+AZ(x)],

A final form of planar flow annihilation solution can be B=[ 0,—ABy,ABz+Nh(X)y+Z(x)], (33
derived by settindJ=0 in the expression for the fluid ve- o _
locity. This implies that the velocity must be of the form Z(x)=Cy sin(ux)+C, cog ux),

v=[0, b(x)y+f(x),—b(x)z+g(x,y)], (28 wheren=\[(1—\?) B/ 5. The functionh(x) must now be a

linear function ofx for the superposition constraint to be
satisfied exactly.
In order to visualize the basic structure of this solution it
is instructive to seh(x)=0 and letZ(x) =sin(ux), see Fig.
5. The streamlines and fieldlines are then confined to planes
€f constantx and both have an X-type structure. When
= nm the functionZ(x) vanishes and the streamlines and
Yo fieldlines coincide exactly, but for other valuesxbne pair
b(x)=Bo, f(X)=v70, 9(xX,y)=h(xX){y+ %) +380,  of the separatrices of the field and the flow become sepa-
(29 rated. There are three distinct separatrix planes in the prob-
lem: the planey = 0, which is a separatrix for both the flow
and the field; and the two corrugated planes
z=\ sin(ux)/B andz=sin(ux)/(\8), which denote the other
separatrix planes of the flow and field, respectively. This is a
reconnective solution, as there is flow across the corrugated
v=[0,8y,— Bz+h(x)y], (300  separatrix of the magnetic field.

in order to support an annihilation solution. This type of
planar flow annihilation solution has not appeared in the lit-
erature before, so we shall retdirandg in order to deter-
mine their influence on the new flow profile. Substituting this
expression for the velocity into the momentum equation wi
find that

where By, vo and &, are constants anld(x) is an arbitrary

function ofx. The constanty, and §, can always be set to
zero by a suitable relabelling of the and z coordinates,

hence the general form of the flow pattern is given by
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Furthermore the dimensionless resistivity of the corona, es-
timated to be»n.~10"12 implies that the sinusoidal field
would have to oscillate over a wavelength of ordef16m
(assuming a global length-scale of the coronal field of order

x=m/1 L.~10%°cm). It is not clear how such rapid spatial oscilla-
tions of the field could be initiated or sustained.

V4N
4
s

VI. CONCLUSIONS

V4
We have shown that it is possible to construct a number
of exact analytic magnetic merging and reconnection solu-

2
tions in the incompressible limit by making some very
simple assumptions about the form of the magnetic field. Our

FIG. 5. A schematic representation of the velocity and magnetic fields for h h | 0 | .
the superposed transversely varying field solution with approac as also allowed several new quaS|-steady recon-

= [0,8y, — Bz+\sin(ux)] andB=[0\ By, —\ Bz+sin(ux)]. Flow stream-  nection solutions to be derived. The various solutions are
lines and magnetic fieldlines are confined to planes of congtaBbntours convenienﬂy classified in terms of their energy release scal-
of the streamlinessolid contourg and fieldlines(dotted contoursare given ings with plasma resistivityy. A key issue, as discussed in
for the three planesx=0, x==/(2u) and x=a/u. In the planes S i heth lution h h ial . h
x= 0,7/ u the flow and the field coincide. The plare 7/(2u) is the plane ec. Il, is whether any solution a? the _potentla to Sat'Sfy the
where the velocity profile and the magnetic field are most out of phase. Th€xtreme energy release constraints imposed by the solar
dashed linez=X\ sin(ux)/B and z=sin(ux)/(\B) represent the corrugated flare.
separatrix planes of the flow and the field, respectively. More specifically, any flare solution must be able to sus-
tain significant energy release at very small plasma resistiv-
ities. This must be done without building up coronal gas
C. Solution scalings pressures that exceed the photospheric magnetoconvection
pressures that drive the merging. However, while most of our

reduced? Clearly the magnetic field for solutié88) oscil- solutipn; cann(_)t be regarded as serious. flgre models, they
lates more rapidly asy—0, but its maximum amplitude is remain mtgrestlng as S|mple,. exact descriptions of the mag-
unaffected. The field loses energy to Ohmic heating in thé'€tic merging and reconnection processes.
current sheets that separate alternate regions of the anti- " fact only the planar reconnection solution of Sec. li
parallel field. Although the current in these sheets increase&®n Pe regarded as a potential flare candidate. The Dawson
with decreasingy the sheets also become narrower, so thafunction annihilation mode(Sec. Ill B) is very good at re-
they remain relatively weak heating sources. Despite the fad€@sing energy—it achieves a super fast rate—but the back-
that the individual current sheets are weak, a fgisbal ground pressure required to sustain Fhe merging is_ prphibi-
Ohmic heating rate77", , is sustained due to the fact that the tively large (oo ~ 7~ ) due to the continual increase in field
number of sheets increases as the resistivity is decreased, idfength near the null ag is reduced. This unphysical be-
L havior implies an increasing Ohmic dissipation rate with de-
V= (3% = Wf Z'2dx=0(1), as 7—0. (34) creasing resistivity, wh|ph can only bg _avgldeq by postula_t—
-1 ing the eventual saturation of the annihilation field. That this

The magnetic field is maintained against these losses by VilsTaturatlonmust occur follows from the reconnection solu-

tue of the fact that it is embedded in a stretching flow. tions by the constraint of sub-luminal coronal velocity fields.

We note that as well as being a fast dissipation squtihohe key point is that by regarding the Dawson function so-

this solution also appears to quite naturally overcome any'tlon as a ct;)Imponentbln a f%"yd reﬁﬁnnec§|v$.model, the
gas pressure problem. as the pressure, given by pressure problem can be avoided while maintaining energy
) release rates comparable to a flare. This is true even for

How do these solutions behave gsis systematically

1 1-A classically weak resistivitiesz;= 10 1?). By contrast mod-
_ _ 2,2 _ 2 2 2\,2
P=Po 2(’8 y'+(=pzthy)™+ 20+ (h%y els which involve the advection of a normal field component
by a planar flow(Sec. IV) only release energy very slowly, at
—2phy2)—\(—Bz+hy)Z, (35 yap W V) only gy very y

the Sweet—Parker rate. The oscillating field solutions of Sec.
now scales independently of resistiviiy particular|Z|,.x<is  V could in principle provide the flare energy, but these in-
independent ofy). volve unphysically rapid spatial oscillations of the field.
Although this solution displays fast energy dissipation In Part Il we find that relaxing the constraint of planar
characteristics and overcomes the pressure build-up problefftow does not lead to a proliferation of potential flare solu-
it is clearly not a sensible candidate for the energy releastions. Specifically we show that although 3-D solutions can
mechanism of phenomena such as solar flares. This is b&ave exotic multiple scalings with resistivity, these do little
cause the Ohmic heating now occurs throughout the plasmé#&y ease the severe constraints on an acceptable flare mecha-
rather than in a localized region as observed for solar flaregiism.
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