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Analytic solutions of the magnetic annihilation and reconnection problems.
I. Planar flow profiles

P. G. Watsona) and I. J. D. Craig
The University of Waikato, Hamilton, New Zealand

~Received 13 June 1996; accepted 15 October 1996!

The phenomena of steady-state magnetic annihilation and reconnection in the vicinity of magnetic
nulls are considered. It is shown that reconnective solutions can be derived by superposing the
velocity and magnetic fields of simple magnetic annihilation models. These solutions contain most
of the previous models for magnetic merging and reconnection, as well as introducing several new
solutions. The various magnetic dissipation mechanisms are classified by examining the scaling of
the Ohmic diffusion rate with plasma resistivity. Reconnection solutions generally allow more
favorable ‘‘fast’’ dissipation scalings than annihilation models. In particular, reconnection models
involving the advection of planar field components have the potential to satisfy the severe energy
release requirements of the solar flare. The present paper is mainly concerned with magnetic fields
embedded in strictly planar flows—a discussion of the more complicated three-dimensional flow
patterns is presented in Part II@Phys. Plasmas4, 110 ~1997!#. © 1997 American Institute of
Physics.@S1070-664X~97!03001-2#
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I. INTRODUCTION

Magnetic reconnection is thought to be responsible
the explosive energy release observed in solar flares, t
mak disruptions and magnetic substorms in the geomagn
tail. In such phenomena complicated magnetic field str
tures undergo a global simplification as fieldlines are cut
rejoined at magnetic null points. The released magnetic
ergy is converted into either the kinetic energy of ejec
plasma or the thermal energy of resistively heated gas.
important theoretical problem is reconciling the explos
collapse of the field with the extremely low resistivities
typical plasmas.

As the magnetohydrodynamic~MHD! equations are
highly nonlinear, the chances of finding an analytic desc
tion of reconnection seem remote. Accordingly, sem
analytic or numerical approaches have traditionally been
preferred methods of obtaining solutions. Heuristic se
analytic solutions can certainly provide important insigh
into the problem, but their validity is always questionable.
first sight numerical simulations seem to provide the o
self-consistent means of tackling the apparently intracta
equations. Typical simulations1 however, are limited by un-
realistic resistivities and the implementation of sensi
boundary conditions—particularly in ‘‘open’’ plana
geometries.2

Motivated by these considerations, there has been a
cent surge in the search for an analytic description of m
netic merging. Recent studies3–7 have generalized the we
known magnetic annihilation solutions based on theansatz
of stagnation point flow.8,9 More significantly it has been
shown that exact families of reconnection solutions can
constructed in both two and three dimensions.10–12 These
display the essential characteristics of ‘‘fast’’ ener
release—specifically, the collapse of the field to small len
scales as required by an Ohmic heating rate that scales

a!Electronic mail: pgwatson@hoiho.math.waikato.ac.nz
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pendently, or as some negative power, of the plasma re
tivity. Existing two-dimensional~2-D! and three-dimensiona
~3-D! models suggest that extremely large external press
are required to contain magnetically intense, flux pile-up
gions close to the neutral point. A key question is wheth
fast reconnection solutions can be found which alleviate
difficulty.

The aim of this paper, and its companion paper, Wat
and Craig,13 hereafter referred to as Part II, is to develo
magnetic annihilation/reconnection solutions within t
framework of incompressible, steady-state MHD, and to
sess their possibilities as fast energy dissipation mechani
Although we recognize that a catastrophic event like a so
flare will involve a breakdown of the fluid approximation
we would argue that the MHD collapse to small length sca
provides a necessary precursor to rapid energy release
begin by considering only the simplest inviscid magnetic a
nihilation solutions,3–9 but show, by means of a general s
perposition argument, that these can be developed into f
reconnective models. In particular, we recover the reconn
tion solution of Craig and Henton,10 hereafter referred to a
CH, as well as generating several new quasi-steady re
nection models.

In Sec. II we introduce the MHD equations and descr
our approach to developing analytic solutions. Only plan
flows are considered in this paper and there are three fam
of solutions to discuss, each one given by setting a differ
component of the flow to zero. These solutions are analy
in detail in Secs. III, IV and V. Our conclusions are summ
rized in Sec. VI.

II. THE BASIC EQUATIONS

The equations that govern the behavior of a magneti
incompressible fluid can be written in the following no
dimensional form:
1019/$10.00 © 1997 American Institute of Physics
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]v

]t
1~v•¹!v52¹p1~¹3B!3B,

]B

]t
5¹3„v3B…1h¹2B,

¹•B50, ¹•v50,

where the equations have been non-dimensionalized with
spect to typical coronal parameters by scaling lengths wi
length-scaleLc , magnetic fields with the background fie
strength Bc , velocities with the Alfve´n speed vA
5Bc /(8pr)1/2, time with the Alfvén travel time tA
5Lc /vA and gas pressure withBc

2/8p. The dimensionless
resistivity,h, is given by

h5
h̄

vALc
5
MA

Rm
,

whereh̄ is the physical resistivity,Rm is the magnetic Rey-
nolds number andMA 5 v/vA is the Alfvén Mach number.
It is clear that the MHD system is invariant to translatio
and rotations of the coordinate system.

The gas pressure can be removed from this system
equations by taking the curl of the equation of motion,
give

]v

]t
1~v•¹!v2~v•¹!v5~B•¹!J2~J•¹!B,

whereJ5 ¹3B is the electric current andv5¹3v is the
vorticity. Assuming a plausible solution has been construc
for the magnetic and velocity fields, the gas pressure dis
bution is determined from the primitive~uncurled! form of
the momentum equation.

A. The rate of resistive energy dissipation

The MHD system described above is conservative a
from resistive energy losses. The global energy of the flui
dissipated at the rate

W h5^hJ2&5hE J2dV,

and unless very large currents are set up this rate is ph
cally negligible in typical coronal plasmas. This is a cons
quence of the smallness of the resistivity—h is typically
O(10212) in collision dominated gases. The upshot is th
the magnetic field must possess very small length scale
the currents are to be large enough to dissipate a signifi
amount of energy. Although plasma instabilities can raise
effective collision frequency, causing enhancements in
resistivity by factors exceeding 104 ~see Parker,14 p. 783!,
small length scales are still necessary for appreciable en
release.

The most severe constraints on the Ohmic dissipa
rate are provided by the solar flare. Consider a coronal fi
of strengthBc5100 G occupying the volumeV5Lc

3 where
Lc5109.5 cm. Then a modest reduction in the field of a fe
Gauss is sufficient to produce a typical flare energy of
1029 to 1030 ergs. This energy is liberated within a few hu
dred seconds and so the power output must average 1027 to
1028 ergs per second.
102 Phys. Plasmas, Vol. 4, No. 1, January 1997
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To understand the severity of this constraint we first n
thatW h is conveniently calibrated using the coronal ma
netic energy^Bc

2/8p& divided by the coronal Alfve´n time
tA5Lc /vA . For the typical speedvA.108.5 cm/s,tA510 s,
and soW h is measured in units of 1030 ergs per second. I
follows thatW h for a typical coronal resistivityh5hc must
be of order 1023 to achieve an output power comparable to
flare. In particular, forhc510212, we obtain the severe re
quirement that the dimensionless current must build up to
level ^J2&;109.

B. Magnetic annihilation solutions

We begin by presenting steady-state magnetic annih
tion solutions in which anti-parallel fields are swept togeth
by the flow. Reconnection solutions are then construc
from annihilation models by invoking the method of Se
II C. Although the annihilation of the magnetic field embe
ded in planar flows has been well studied by a number
previous authors,3–9we feel it is important to re-cap the var
ous solutions here, as they provide the basis for our rec
nection solutions—we also emphasize some difficulties as
ciated with these solutions.

Specializing to the case of one component fields, w
the field directed in thez-direction, the condition¹•B50
implies that the field must be of the formB5Z(x,y) ẑ. We
make the further simplification thatB is independent ofy, so
that

B5@0,0,Z~x!#.

Note that for this type of field (B • ¹)J2(J • ¹)B50.
What types of flow can maintain this magnetic fie

against resistive diffusion? To retain as much generality
possible we initially make no assumptions about the form
the flow and take

v5@U~x,y,z!,V~x,y,z!,W~x,y,z!#.

The three equations we must satisfy are the steady-s
momentum equation,

~v•¹!v2~v•¹!v5~B•¹!J2~J•¹!B, ~1!

the induction equation

~v•¹!B2~B•¹!v5h¹2B, ~2!

and the continuity equation,

¹•v50. ~3!

On substituting forv andB into Eqs.~1!–~3! one finds that
v must be of the form

v5@2a~x!,b~x!y1 f ~x!,c~x!z1g~x,y!#, ~4!

wherea8(x)2b(x)2c(x)50, while the functionZ(x) must
satisfy

hZ91a~x!Z81c~x!Z50. ~5!

Allowable forms for the functionsa,b,c, f ,g must be deter-
mined from the momentum equation. Note, in agreem
with Phan and Sonnerup,4 that it is not necessary to make th
ansatzof stagnation point flow.3,5–9
P. G. Watson and I. J. D. Craig
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C. Constructing reconnection solutions

In what follows we exploit the fact that fields defined b
magnetic annihilation models can be used as prototype
the construction of magnetic reconnection solutions. Not
the remarkable symmetry betweenv andB in Eqs. ~1! and
~2!—a symmetry broken only by the resistive diffusio
term—we assume reconnection solutions of the form

v5va1lBa ,
~6!B5lva1Ba ,

whereva andBa are the velocity and magnetic fields of th
annihilation solution andl is a constant.

Substituting these forms into Eqs.~1!–~3! we find that
the momentum and continuity equations are automatic
satisfied, while the induction equation yields

~12l2!$~va •¹!Ba2~Ba •¹!va%5h¹2Ba1lh¹2va .
~7!

This equation can be satisfied by an annihilation solut
with a new effective velocity given by (12l2)va , provided
¹2va 5 0. As we will see, solutions that meet this constra
do exist, and because of the added complexity of their flo
field topology they allow for the possibility of magnetic re
connection.

Suppose however, that¹2va does not vanish identically
If the annihilation velocity fieldva contains only global
length scales then the offending term makes only a neglig
O(h) contribution to the induction equation. Neglecting th
term yields a model which, although not formally exact, c
be regarded as a quasi-steady reconnection solution fo
practical purposes since any evolution of the quasi-ste
solution only occurs very slowly, on the time scalet;h21.

Finally, we mention another interpretation of the reco
nection solutions: they can be thought of as describing
non-linear disturbance of some quiescent equilibrium—
interpretation central to CH. Specifically, we regard the fi
componentsvd5lZ(x) ẑ and Bd5Z(x) ẑ as being super-
posed onto the background quiescent solutionvq5va ,
Bq5lva . All flows in the background field are constraine
to the fieldlines but departures from potential fields11 are
possible, at least for quasi-steady solutions. A key featur
the reconnection analysis is that the superposed ‘‘displa
ment field’’ can be normalized relative to the backgrou
field in any convenient manner. This freedom is exploited
Sec. III D.

D. The family of models

Our basic aim is to demonstrate that simple, global
locity fields can naturally support localized resistive dissip
tion in the fluid. Since we restrict our attention to pure
planar flows it is natural to classify solutions in terms
whether planar or non-planar field components are adve
by the flow. In fact we shall see that it is only planar com
ponents which are magnified by advection towards the n
tral line—and which can lead to fast reconnection solutio
We begin therefore by reviewing annihilation solutions
which fieldlines, lying in the plane of the flow, are swe
together into the current layer.
Phys. Plasmas, Vol. 4, No. 1, January 1997
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III. DISSIPATION OF PLANAR FIELD COMPONENTS:
FLOWS WITH V50

A. Annihilation solutions

When they-component of the flow vanishes one mu
take

v5@2a~x!, 0, a8~x!z1g~x,y!#, ~8!

in order to support an annihilation solution withB5Z(x) ẑ.
Equation~5! shows thatg(x,y) has no influence on the mag
netic field—it merely represents distortions of the ba
background flow3–9 dictated by a(x)—and so we set
g(x,y)50 in what follows. Substituting the expression fo
v into the momentum equation implies that

a8a95aa-. ~9!

This equation has solutions of the form

a~x!5H a1x1a0 ,

a1 sin~kx!1a0 cos~kx!,

a1 sinh~kx!1a0 cosh~kx!,
~10!

wherek is a constant, so that there are three allowable ty
of flow. The parametera0 can be set to zero by suitabl
relabelling the axes.

The magnetic field componentZ(x) is determined by the
equation

hZ81a~x!Z5E0 , ~11!

where E0 is a constant that can be identified with th
y-component of the background electric field. Solutions
Z(x) can always be expressed in quadrature form by defin

H6~x!5expF6
1

hE
x

a~u!duG ,
and writing

Z~x!5
E0

h
H2~x!Ex

H1~u!du.

This form describes the flux pile-up annihilation solutio
discussed at length in the literature.3–9

In the case of the linear flow profile the solution can
expressed in terms of known functions~see CH!. We intro-
duce the Dawson function15

daw~x!5E
0

x

exp~ t22x2!dt, ~12!

which increases asx22x3/3 for small x, peaks when
daw(x).0.541 atx . 0.924, before declining monotoni
cally, as 1/(2x), for largex.

The general form of the linear flow is

v5@2ax,0 ,az#, ~13!

and the solution of~11! in this case is given by

Z~x!5
E0

hm
daw~mx!1C1 exp~2m2x2!, ~14!

wherem25a/(2h). This linear velocity pattern represents
stagnation point flow in thex-z plane.
103P. G. Watson and I. J. D. Craig
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Solutions for the sinusoidal and hyperbolic flow patter
must be determined numerically. Although the trigonome
solution can be fundamentally different7 from the other two
flows if k . p, as it then has multiple stagnation points, w
restrict our attention to the casek , p for simplicity.

Figure 1 compares the magnetic fields for the three
ferent types of inflow profile. Although the behavior of th
magnetic field in the outer region may differ, it is clear th
the field in the vicinity of the origin is similar for all three
flows. In each case the inner field is confined to strong sh
on either side of the magnetic null, as expected for fl
pile-up solutions. Note that these solutions have been sc
to have the same peak field in the sheet for the purpose
comparison. To determine how each solution scales with
sistivity we must fix the value of the field at the bounda
while allowingh to vary.

B. Are fast annihilation solutions possible?

To investigate whether fast dissipation is possible
first consider the Dawson function solution under the tra
tional flow symmetries, that isC150. The behavior of the
Dawson function for large arguments implies th
Z(1).E0 /a as h→0. This means that the constantE0,
which provides a measure of the flux annihilation rate, c
be chosen independently ofh by fixing the magnetic field
strength at the boundaries. The maximum field strength
the sheetZs , which occurs atxs.0.924A2h/a scales as
h21/2, while the current densityJs , which is proportional to

Z85
E0

h
$122mx daw~mx!%, ~15!

FIG. 1. Plots of magnetic fieldZ(x) versusx for the case of the annihilation
of planar field components. Solutions are for the parameter seta 5 1, k
5 3, h 5 0.01 and the three different velocity profiles: linear~—!, trigo-
nometric~•••! and hyperbolic~– – –!. These antisymmetric solutions hav
been scaled to have the same peak magnetic field in the sheet near th
The magnetic fields for both the linear and hyperbolic flows decay mo
tonically near the outer boundary, while the solution for the trigonome
flow starts to increase again for this value ofk.
104 Phys. Plasmas, Vol. 4, No. 1, January 1997
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scales ash21. These scalings imply that the Ohmic heatin
rate,

W h5h^J2&.hJs
2dVs.O~h21/2!, ~16!

is fast for this type of annihilation solution. The same beha
ior for solutions with trigonometric and hyperbolic flow pro
files can be deduced from numerical computations. Thus
conclude that this family of models achieves a fast ene
release by allowing the magnetic field to ‘‘pile-up’’ into thi
sheets on either side of the magnetic null point.

There is however, a major difficulty with such flu
pile-up solutions. The gas pressure is given by

p5p02
1

2
~a21a82z21Z2!1

1

2
aa9z2. ~17!

It follows that sinceuZsu scales ash21/2, the background
pressure,p0, must scale ash

21 to avoid non-physical nega
tive pressures. Thus the super-fast dissipation rate
achieved at the cost of building up unphysically large pr
sures within the annihilation region. Obviously, it mak
little physical sense forp0 to exceed the external hydromag
netic pressures that power the merging process—say,
magnetoconvection pressures associated with photosp
sunspot motions. And sincep0 essentially determines th
pressure on the boundary it appears difficult to reconcileany
of these solutions with a low-beta coronal plasma in the
field.

These objections can be countered to some exten
postulating that the solution is sandwiched between magn
cally dominant external boundary regions which lie outs
the reconnection region. Some support for this notion is p
vided by the sinusoidal velocity solution, which shows th
we are free to choose a wave numberk & p that allowsZ to
build up on the outer boundary. Such a solution is shown
the dotted curve in Fig. 1. We see that low pressure coro
conditions can now be approximated in the far field at
cost of introducing a strong dissipation region at the ou
boundary. In fact the outer boundary current, as indicated
the steep gradient inZ, is directly comparable in strength t
the central current sheet. Of course, the extreme pres
variations within the reconnection region remain.

We conclude that flux pile-up annihilation solutions, a
though formally fast, generally run up against severe phy
cal difficulties. An encouraging feature of the reconnecti
solutions described below is that the pressure problem ca
overcome far more naturally without compromising the fa
dissipation rate.

C. Reconnection solutions

In the case of the linear velocity profile the superpositi
method of Sec. II C yields the exact solution

v5@2ax, 0, az1lZ~x!#,

B5@2lax, 0, laz1Z~x!#, ~18!

Z~x!5
E0

hm̄
daw~m̄x!1C1exp~2m̄2x2!,

ull.
-
c

P. G. Watson and I. J. D. Craig
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wherem̄5A(12l2)a/(2h). An alternate derivation and de
tailed analysis of solution~18! is given by CH. A new fea-
ture of the present analysis however, is that highly accu
quasi-steady reconnection solutions can also be deduce
the sinusoidal and hyperbolic flow profiles, providedk
! O(h21/2).

A superposed solution with a sinusoidal inflow profile
shown in Fig. 2. The fact that there is flow across the curv
separatrix of the field—the separatrix not contiguous w
the current layer—confirms the solution as reconnect
This is also reflected by the presence of strong shearing
tions across the current layer. These features are no
stricted to sinusoidal flow solutions: they are generic to
three flow profiles.

D. Solution scalings with plasma resistivity

Although the reconnection solutions scale in exactly
same way as the annihilation models, they can be give
completely different physical interpretation, as discussed
Sec. II C. Specifically, to avoid unbounded Ohmic dissip
tion losses in the limit of smallh, we identify vd5lZ(x) ẑ
andBd5Z(x) ẑ as disturbance fields superposed on the q
escent solutionvq5va , Bq5lva . Since the plasma pressu
is now given by

p5p02
1

2
~a21a82z21Z2!1

12l2

2
aa9z22la8zZ,

~19!

we assume that the pressure of the disturbance fieldZ(x)
cannot overwhelm the background field contributi
Bq5lva . In practice, this is tantamount to bounding t
field Zs in the sheet at a level determined by the distant fie
That Zs must eventually saturate also follows from the r
Phys. Plasmas, Vol. 4, No. 1, January 1997
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quirement that the displacement velocity field magnitude
which is absent in the pure annihilation solution—must
bounded by the speed of lightc.

The basic idea is illustrated in Fig. 3. The amplitude
the disturbance field on the outer boundary is chosen sm

FIG. 3. A plot of the magnitude of the magnetic field along thex-axis for a
superposed solution with a hyperbolic velocity inflow profile. The solid li
gives the total magnitude of the field, while the dashed and dotted l
represent the contributions from the disturbance field,Z, and the quiescent
background field,lva , respectively. The amplitude of the disturbance fie
is completely arbitrary, but we argue from physical considerations that
pressure forces generated in the sheet cannot greatly exceed the forc
the boundary that drive the reconnection process. This suggests that the
in the sheet,Zs , must be limited by the fieldZp on the boundary.
105P. G. Watson and I. J. D. Craig
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enough so that the flux pile-up layer is no longer more
tense magnetically than the ‘‘far field’’ on the boundari
x.61 that sandwich the reconnection region. In oth
words, in recognition of the fact that magnetoconvect
footpoint forces ultimately drive the reconnection, we ta
uZsu to be bounded by the magnitudeuZpu of the photospheric
field at the boundary. The Ohmic power output, namely

Po5hc^J
2&.hcJs

2dVs.hc
1/2Zs

2, ~20!

wherehc is the coronal resistivity, then builds up only un
the sheet field strengthZs approachesZp . SinceZs cannot
exceedZp the maximum dissipation rate saturates at the li
Po.hc

1/2Zp
2 The pressure is now bounded by the lim

p;Zp
2/2 and so the unphysical gas pressure distribution

the annihilation model is avoided.
It is important to ask whether the pressure problem

been overcome at the drastic cost of making the solu
‘‘slow.’’ In fact, the solution remains fast provided the lev
of the disturbances are small enough to maintain the li
Zs;Zp . The question is really whether the limiting Ohm
dissipation ratePo5hc

1/2Zp
2 is sufficient to power a flare

Taking Zp5101.5—which corresponds to a photospher
field of order 3000 G—yieldsPo5O(1023) which, as dis-
cussed in Sec. II B, is quite sufficient to power a siza
event. The extreme conditions of the flare are now reflec
in the large displacement velocities—at 30vA these are now
approaching an appreciable fraction of the speed of lighc.
These conditions are significantly eased however, ifhc is
enhanced by micro-instabilities in the sheet. A modest
crease, say by a factor of 104, implies thatZs of order unity
is quite sufficient for a moderate flare. Thus the model
pears feasible even assuming fairly conservative satura
limits.

Finally we mention an apparent difficulty that arises w
the reconnection~and annihilation! solutions if we consider
solutions that deviate from perfect anti-symmetry. In th
case it appears that the magnetic field should scale accor
to uZsu . C1 ; exp(1/h). We will show in Part II however,
that this unphysical behavior is an artifact of imposing str
two-dimensionality on the flow.

IV. DISSIPATION OF NORMAL FIELD COMPONENTS:
FLOWS WITH W50

A. Annihilation solutions

We now consider a second class of annihilation soluti
formed by settingW[0 in the expression for the velocit
profile, Eq.~4!. The flow now has the form

v5@2a~x!,a8~x!y1 f ~x!,0#, ~21!

wheref (x) can once again be set to zero as it only represe
a distortion of the basic flow pattern that does not affect
magnetic field. To satisfy the momentum equation the fu
tion a(x) must obey the relationa8a95aa-. This equation
is the same as that covered by the discussion of Sec. II
and one obtains linear, sinusoidal and hyperbolic profiles
the inflow a(x). Turning to the induction equation, we fin
that the magnetic field componentZ(x) is determined by

hZ91a~x!Z850. ~22!
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Solutions for the three possible choices ofa(x) are shown in
Fig. 4.

If we assume a linear flow profile the magnetic field
maintained by a flow of the generic form

v5@2ax,ay,0#, ~23!

wherea is a constant. This velocity profile now represents
stagnation point flow in thex-y plane. The solution of Eq
~22! may now be written as

Z~x!5C1erf~mx!1C2 , ~24!

see Besseret al.,6 where the constantm is given by
m25a/(2h) andC1 andC2 are determined by the magnet
field on the boundariesx 5 61. Traditional annihilation
solutions model the merging of perfectly anti-parallel field
which would imply Z(0) 5 0, but this symmetry can be
broken if the constantC2 is non-zero.

B. Superposed solutions

A second class of solutions can be constructed by p
forming the superposition given in~6!. For the linear flow we
find that

v5@2ax,ay,lZ~x!#,

B5@2lax,lay,Z~x!#, ~25!

Z~x!5C1erf~m̄x!1C2 ,

where m̄5A(12l2)a/(2h) provides an exact solution to
the MHD equations as the condition¹2va 5 0 is satisfied.
As before, the trigonometric and hyperbolic profiles lead
new solutions in the sense of Sec. II C. The key point
that—unlike the superposed solutions of Sec. III B—none
these solutions allow flow across the separatrices of the m
netic field, and hence they are not reconnective. Specifica
sincez is an ignorable coordinate in the present solutio
only planar reconnection can occur—and this can be ov
ruled by noting that the streamlines and fieldlines coinc
when they are projected onto planes of constantz.

C. Solution scalings with plasma resistivity

We examine the superposed solution with the linear fl
profile first, as its scalings can be determined analytica
Equation~25! shows that the magnetic field is uniform ou
side the diffusion region. ThereforeJs scales ash

21/2, which
implies the slow heating rate,

W h5h^J2&.hJs
2dVs.O~h1/2!. ~26!

This behavior in fact accords with the traditional slo
Sweet–Parker scaling. But whereas the approximate Sw
Parker model describes the annihilation of planar field, t
solution provides an exact solution for the dissipation of n
mal field components. Numerical simulations reveal that
Ohmic heating rates for the trigonometric and hyperbo
flow solutions~both annihilation and superposed! obey ex-
actly the same scaling law, so they too are slow dissipa
solutions.

The absence of flux pile-up in these solutions—i
uZumax5O(1)—shows that there is no difficulty with th
pressure profile,
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p5p02
1

2
~a21a82y21Z2!1

12l2

2
aa9y2, ~27!

wherea(x) corresponds to any one of the allowable flo
profiles given in ~10!. It is clear that normal field
components—unlike planar components—are not amplifi
by advection into the current layer.

V. DISSIPATION OF TRANSVERSELY VARYING
FIELDS: FLOWS WITH U50

A. Annihilation solutions

A final form of planar flow annihilation solution can be
derived by settingU50 in the expression for the fluid ve
locity. This implies that the velocity must be of the form

v5@0, b~x!y1 f ~x!,2b~x!z1g~x,y!#, ~28!

in order to support an annihilation solution. This type
planar flow annihilation solution has not appeared in the
erature before, so we shall retainf andg in order to deter-
mine their influence on the new flow profile. Substituting th
expression for the velocity into the momentum equation
find that

b~x!5b0 , f ~x!5g0 , g~x,y!5h~x!S y1
g0

b0
D1d0 ,

~29!

whereb0, g0 andd0 are constants andh(x) is an arbitrary
function of x. The constantsg0 andd0 can always be set to
zero by a suitable relabelling of they and z coordinates,
hence the general form of the flow pattern is given by

v5@0,by,2bz1h~x!y#, ~30!

FIG. 4. Plots of the magnetic fieldZ(x) versusx for the annihilation of the
normal field component. Plots for the three different velocity profiles, line
~—!, trigonometric ~•••! and hyperbolic~– – –! are shown. These anti-
symmetric solutions were generated with the parameter seta51, k53,
h50.05 and the boundary conditionsZ(0) 5 0 andZ(1) 5 1. Clearly the
structure of the magnetic field is relatively insensitive to the form of t
inflow profile.
Phys. Plasmas, Vol. 4, No. 1, January 1997
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where we have dropped the subscript onb. This type of flow
gives rise to a magnetic field componentZ(x) that must sat-
isfy

hZ92bZ50. ~31!

Equation ~31! implies that there are three allowable fie
configurations,

Z~x!5H C1x1C2 , b50,

C1 sin~mx!1C2 cos~mx!, b,0,

C1 sinh~mx!1C2 cosh~mx!, b.0,

~32!

where m5Aubu/h. Since only the trigonometric solution
possesses field and current structures that are localized i
interior of the domain ash → 0, we restrict our attention to
this case.

The structure of this solution is somewhat unusual. T
flow, which is confined to they-z plane, supports a magneti
field B 5 Z(x) ẑ that varies in thex direction. In any given
plane ofx the magnetic field is uniform, while the flow re
sembles a 2D stagnation point flow. One separatrix of
flow is aligned with the direction of the magnetic field, whi
the orientation of the other is determined by the value
h(x)—the separatrices are orthogonal whenh(x)50.

The role of thex-axis has also changed for this solutio
In the previous two sections thex-axis represented the inflow
direction as well as the direction in which the field varie
Although it is still true that the field varies in this direction
the inflow direction is now along they-axis ~rememberb is
negative!. This implies that there are fine scale field vari
tions on the inflow boundariesy 5 61.

B. Superposed solutions

Another exact solution can be developed by means
the usual superposition procedure, which yields

v5@ 0,2by,bz1h~x!y1lZ~x!#,

B5@ 0,2lby,lbz1lh~x!y1Z~x!#, ~33!

Z~x!5C1 sin~m̄x!1C2 cos~m̄x!,

wherem̄5Au(12l2)bu/h. The functionh(x) must now be a
linear function ofx for the superposition constraint to b
satisfied exactly.

In order to visualize the basic structure of this solution
is instructive to seth(x)[0 and letZ(x)5sin(mx), see Fig.
5. The streamlines and fieldlines are then confined to pla
of constantx and both have an X-type structure. Whenmx
5 np the functionZ(x) vanishes and the streamlines a
fieldlines coincide exactly, but for other values ofx one pair
of the separatrices of the field and the flow become se
rated. There are three distinct separatrix planes in the p
lem: the planey 5 0, which is a separatrix for both the flow
and the field; and the two corrugated plan
z5l sin(mx)/b andz5sin(mx)/(lb), which denote the othe
separatrix planes of the flow and field, respectively. This i
reconnective solution, as there is flow across the corruga
separatrix of the magnetic field.
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C. Solution scalings

How do these solutions behave ash is systematically
reduced? Clearly the magnetic field for solution~33! oscil-
lates more rapidly ash→0, but its maximum amplitude is
unaffected. The field loses energy to Ohmic heating in th
current sheets that separate alternate regions of the an
parallel field. Although the current in these sheets increas
with decreasingh the sheets also become narrower, so tha
they remain relatively weak heating sources. Despite the fa
that the individual current sheets are weak, a fastglobal
Ohmic heating rate,W h , is sustained due to the fact that the
number of sheets increases as the resistivity is decreased,

W h5h^J2&5hE
21

1

Z82dx5O~1!, as h→0. ~34!

The magnetic field is maintained against these losses by v
tue of the fact that it is embedded in a stretching flow.

We note that as well as being a fast dissipation solutio
this solution also appears to quite naturally overcome an
gas pressure problem, as the pressure, given by

p5p02
1

2
~b2y21~2bz1hy!21Z2!1

12l2

2
~h2y2

22bhyz!2l~2bz1hy!Z, ~35!

now scales independently of resistivity~in particularuZumax is
independent ofh).

Although this solution displays fast energy dissipation
characteristics and overcomes the pressure build-up proble
it is clearly not a sensible candidate for the energy relea
mechanism of phenomena such as solar flares. This is b
cause the Ohmic heating now occurs throughout the plasm
rather than in a localized region as observed for solar flare

FIG. 5. A schematic representation of the velocity and magnetic fields fo
the superposed transversely varying field solution withv
5 @0,by,2bz1lsin(mx)# andB5@0,lby,2lbz1sin(mx)#. Flow stream-
lines and magnetic fieldlines are confined to planes of constantx. Contours
of the streamlines~solid contours! and fieldlines~dotted contours! are given
for the three planes,x50, x5p/(2m) and x5p/m. In the planes
x50,p/m the flow and the field coincide. The planex5p/(2m) is the plane
where the velocity profile and the magnetic field are most out of phase. Th
dashed linesz5l sin(mx)/b and z5sin(mx)/(lb) represent the corrugated
separatrix planes of the flow and the field, respectively.
108 Phys. Plasmas, Vol. 4, No. 1, January 1997
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Furthermore the dimensionless resistivity of the corona,
timated to behc'10212, implies that the sinusoidal field
would have to oscillate over a wavelength of order 103.5 cm
~assuming a global length-scale of the coronal field of or
Lc'109.5 cm!. It is not clear how such rapid spatial oscilla
tions of the field could be initiated or sustained.

VI. CONCLUSIONS

We have shown that it is possible to construct a num
of exact analytic magnetic merging and reconnection so
tions in the incompressible limit by making some ve
simple assumptions about the form of the magnetic field. O
approach has also allowed several new quasi-steady re
nection solutions to be derived. The various solutions
conveniently classified in terms of their energy release s
ings with plasma resistivityh. A key issue, as discussed i
Sec. II, is whether any solution has the potential to satisfy
extreme energy release constraints imposed by the s
flare.

More specifically, any flare solution must be able to su
tain significant energy release at very small plasma resis
ities. This must be done without building up coronal g
pressures that exceed the photospheric magnetoconve
pressures that drive the merging. However, while most of
solutions cannot be regarded as serious flare models,
remain interesting as simple, exact descriptions of the m
netic merging and reconnection processes.

In fact only the planar reconnection solution of Sec.
can be regarded as a potential flare candidate. The Daw
function annihilation model~Sec. III B! is very good at re-
leasing energy—it achieves a super fast rate—but the b
ground pressure required to sustain the merging is proh
tively large (p0 ;h21) due to the continual increase in fiel
strength near the null ash is reduced. This unphysical be
havior implies an increasing Ohmic dissipation rate with d
creasing resistivity, which can only be avoided by postul
ing the eventual saturation of the annihilation field. That t
saturationmust occur follows from the reconnection solu
tions by the constraint of sub-luminal coronal velocity field
The key point is that by regarding the Dawson function s
lution as a component in a fully reconnective model, t
pressure problem can be avoided while maintaining ene
release rates comparable to a flare. This is true even
classically weak resistivities (hc510212). By contrast mod-
els which involve the advection of a normal field compone
by a planar flow~Sec. IV! only release energy very slowly, a
the Sweet–Parker rate. The oscillating field solutions of S
V could in principle provide the flare energy, but these
volve unphysically rapid spatial oscillations of the field.

In Part II we find that relaxing the constraint of plan
flow does not lead to a proliferation of potential flare so
tions. Specifically we show that although 3-D solutions c
have exotic multiple scalings with resistivity, these do litt
to ease the severe constraints on an acceptable flare m
nism.
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