980 research outputs found
Nevirapine- and efavirenz-associated hepatotoxicity under programmatic conditions in Kenya and Mozambique.
To describe the frequency, risk factors, and clinical signs and symptoms associated with hepatotoxicity (HT) in patients on nevirapine- or efavirenz-based antiretroviral therapy (ART), we conducted a retrospective cohort analysis of patients attending the ART clinic in Kibera, Kenya, from April 2003 to December 2006 and in Mavalane, Mozambique, from December 2002 to March 2007. Data were collected on 5832 HIV-positive individuals who had initiated nevirapine- or efavirenz-based ART. Median baseline CD4+ count was 125 cells/ÎĽL (interquartile range [IQR] 55-196). Over a median follow-up time of 426 (IQR 147-693) days, 124 (2.4%) patients developed HT. Forty-one (54.7%) of 75 patients with grade 3 HT compared with 21 (80.8%) of 26 with grade 4 had associated clinical signs or symptoms (P = 0.018). Four (5.7%) of 124 patients with HT died in the first six months compared with 271 (5.3%) of 5159 patients who did not develop HT (P = 0.315). The proportion of patients developing HT was low and HT was not associated with increased mortality. Clinical signs and symptoms identified 50% of grade 3 HT and most cases of grade 4 HT. This suggests that in settings where alanine aminotransferase measurement is not feasible, nevirapine- and efavirenz-based ART may be given safely without laboratory monitoring
Enhacement in the dymanic response of a viscoelastic fluid flowing through a longitudinally vibrating tube
We analyzed effects of elasticity on the dynamics of fluids in porous media
by studying a flow of a Maxwell fluid in a tube, which oscillates
longitudinally and is subject to oscillatory pressure gradient. The present
study investigates novelties brought about into the classic Biot's theory of
propagation of elastic waves in a fluid-saturated porous solid by inclusion of
non-Newtonian effects that are important, for example, for hydrocarbons. Using
the time Fourier transform and transforming the problem into the frequency
domain, we calculated: (A) the dynamic permeability and (B) the function
that measures the deviation from Poiseuille flow friction as a
function of frequency parameter . This provides a more complete theory
of flow of Maxwell fluid through the longitudinally oscillating cylindrical
tube with the oscillating pressure gradient, which has important practical
applications. This study has clearly shown transition from dissipative to
elastic regime in which sharp enhancements (resonances) of the flow are found
Which group velocity of light in a dispersive medium?
The interaction between a light pulse, traveling in air, and a generic
linear, non-absorbing and dispersive structure is analyzed. It is shown that
energy conservation imposes a constraint between the group velocities of the
transmitted and reflected light pulses. It follows that the two fields
propagate with group velocities depending on the dispersive properties of the
environment (air) and on the transmission properties of the optical structure,
and are one faster and the other slower than the incident field. In other
words, the group velocity of a light pulse in a dispersive medium is
reminiscent of previous interactions. One example is discussed in detail.Comment: To be submitted on PR
Mechanism of Deep-focus Earthquakes Anomalous Statistics
Analyzing the NEIC-data we have shown that the spatial deep-focus earthquake
distribution in the Earth interior over the 1993-2006 is characterized by the
clearly defined periodical fine discrete structure with period L=50 km, which
is solely generated by earthquakes with magnitude M 3.9 to 5.3 and only on the
convergent boundary of plates. To describe the formation of this structure we
used the model of complex systems by A. Volynskii and S. Bazhenov. The key
property of this model consists in the presence of a rigid coating on a soft
substratum. It is shown that in subduction processes the role of a rigid
coating plays the slab substance (lithosphere) and the upper mantle acts as a
soft substratum. Within the framework of this model we have obtained the
estimation of average values of stress in the upper mantle and Young's modulus
for the oceanic slab (lithosphere) and upper mantle.Comment: 9 pages, 7 figure
Low-order stabilized finite element for the full Biot formulation in soil mechanics at finite strain
This article presents a novel finite element formulation for the Biot equation using low-order elements. Additionally, an extra degree of freedom is introduced to treat the volumetric locking steaming from the effective response of the medium; its balance equation is also stabilized. The accuracy of the proposed formulation is demonstrated by means of numerical analyses.Peer ReviewedPostprint (author's final draft
On the General Ericksen-Leslie System: Parodi's Relation, Well-posedness and Stability
In this paper we investigate the role of Parodi's relation in the
well-posedness and stability of the general Ericksen-Leslie system modeling
nematic liquid crystal flows. First, we give a formal physical derivation of
the Ericksen-Leslie system through an appropriate energy variational approach
under Parodi's relation, in which we can distinguish the
conservative/dissipative parts of the induced elastic stress. Next, we prove
global well-posedness and long-time behavior of the Ericksen-Leslie system
under the assumption that the viscosity is sufficiently large. Finally,
under Parodi's relation, we show the global well-posedness and Lyapunov
stability for the Ericksen-Leslie system near local energy minimizers. The
connection between Parodi's relation and linear stability of the
Ericksen-Leslie system is also discussed
Thermoelastic Damping in Micro- and Nano-Mechanical Systems
The importance of thermoelastic damping as a fundamental dissipation
mechanism for small-scale mechanical resonators is evaluated in light of recent
efforts to design high-Q micrometer- and nanometer-scale electro-mechanical
systems (MEMS and NEMS). The equations of linear thermoelasticity are used to
give a simple derivation for thermoelastic damping of small flexural vibrations
in thin beams. It is shown that Zener's well-known approximation by a
Lorentzian with a single thermal relaxation time slightly deviates from the
exact expression.Comment: 10 pages. Submitted to Phys. Rev.
Fiber Acoustic Waveguide : A Sensor Candidate
Sensor development plays a key role in the field of nondestructive evaluation and process control. The annual fiber optic sensor market alone is a multimillion dollar business (1). Acoustic waves are about five orders of magnitude slower than optical waves and can also be guided in cladded glass fibers, similar to optical fibers, with low loss and low dispersion (2–7). Fiber acoustic waveguides are believed to be a very attractive and basic component for further sensor development (8). In this paper a brief theoretical description of a weakly guiding acoustic fiber (7) is given. The material selection criteria for the core and the cladding of the fiber guide, the properties of single-mode operation, and some sensing mechanisms for temperature and pressure variations are discussed. The acoustic waveguide with a liquid core is also considered
- …