15 research outputs found

    Sequences of the coat protein gene of five peanut stripe virus (PStV) strains from Thailand and their evolutionary relationship with other bean common mosaic virus sequences

    No full text
    The coat protein gene and part of the 3′ non-coding region of five strains of peanut stripe virus (PStV) from Thailand have been cloned and sequenced. Phylogenetic comparisons of these strains, known as T1, T3, T5, T6 and T7, and related sequences showed that these strains are indeed strains of PStV. Further, PStV strains appear to be related to each other according to their geographic origin. That is, the Thai strains are more closely related to each other than they are to strains from the USA or Indonesia, despite the variety of symptoms caused by these strains and the overlap of symptom types between the strains from different locations. Like other PStV strains, PStV-Thai can be considered strains of bean common mosaic virus (BCMV) but can be distinguished from bean-infecting strains of BCMV and blackeye cowpea mosaic virus (BlCMV) through sequence and host range. No evidence was found that PStV-Thai strains, unlike PStV-Ib, are recombinants of PStV and BlCMV, although the T3 strain may be a recombinant of different PStV sequences. Phylogenetic analyses of viruses of the BCMV group suggest that acquisition of the ability to infect peanut may have occurred only once

    Two novel Alphaflexiviridae members revealed by deep sequencing of the Vanilla (Orchidaceae) virome.

    No full text
    The genomes of two novel viruses were assembled from 454 pyrosequencing data obtained from vanilla leaves from La RĂ©union. Based on genome organization and homologies, one agent was unambiguously classified as a member of the genus Potexvirus and named vanilla virus X (VVX). The second one, vanilla latent virus (VLV), is phylogenetically close to three unclassified members of the family Alphaflexiviridae with similarity to allexiviruses, and despite the presence of an additional 8-kDa open reading frame, we propose to include VLV as a new member of the genus Allexivirus. Both VVX and VLV were mechanically transmitted to vanilla plants, resulting in asymptomatic infections

    Sequence characterization, molecular phylogeny reconstruction and recombination analysis of the large RNA of Tomato spotted wilt virus (Tospovirus: Bunyaviridae) from the United States

    No full text
    BACKGROUND: Tomato spotted wilt virus (TSWV; Tospovirus: Bunyaviridae) has been an economically important virus in the USA for over 30 years. However the complete sequence of only one TSWV isolate PA01 characterized from pepper in Pennsylvania is available. RESULTS: The large (L) RNA of a TSWV WA-USA isolate was cloned and sequenced. It consisted of 8914 nucleotides (nt) encoding a single open reading frame of 8640 nts in the viral-complementary sense. The ORF potentially codes for RNA-dependent RNA polymerase (RdRp) of 330.9 kDa. Two untranslated regions of 241 and 33 nucleotides were present at the 5′ and 3′ termini, respectively that shared conserved tospoviral sequences. Phylogenetic analysis using nucleotide sequences of the complete L RNA showed that TSWV WA-USA isolate clustered with the American and Asian TSWV isolates which formed a distinct clade from Euro-Asiatic Tospoviruses. Phylogeny of the amino acid sequence of all tospoviral RdRps used in this study showed that all the known TSWV isolates including the USA isolate described in this study formed a distinct and a close cluster with that of Impateins necrotic spot virus. Multiple sequence alignment revealed conserved motifs in the RdRp of TSWV. Recombination analysis identified two recombinants including the TSWV WA-USA isolate. Among them, three recombination events were detected in the conserved motifs of the RdRp. CONCLUSIONS: Sequence analysis and phylogenetic analysis of the L RNA showed distinct clustering with selected TSWV isolates reported from elsewhere. Conserved motifs in the core polymerase region of the RdRp and recombination events were identified. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13104-016-1999-1) contains supplementary material, which is available to authorized users

    The classification and nomenclature of endogenous viruses of the family Caulimoviridae

    No full text
    Endogenous members of the family Caulimoviridae have now been found in the genomes of many plant species. Although these sequences are usually fragmented and rearranged and show varying degrees of decay, the genomes of the ancestral viruses can often be reassembled in silico, allowing classification within the existing viral taxonomic framework. In this paper, we describe analyses of endogenous members of the family Caulimoviridae in the genomes of Oryza sativa, Nicotiana tabacum and Solanum spp. and on the basis of phylogeny, genome organization and genetic distance within the pol gene, propose two new virus genera called Orendovirus and Solendovirus. A system of nomenclature for endogenous virus sequences in plants is also proposed
    corecore