445 research outputs found

    The Nano-X Linear Accelerator: A Compact and Economical Cancer Radiotherapy System Incorporating Patient Rotation.

    Get PDF
    Rapid technological improvements in radiotherapy delivery results in improved outcomes to patients, yet current commercial systems with these technologies on board are costly. The aim of this study was to develop a state-of-the-art cancer radiotherapy system that is economical and space efficient fitting with current world demands. The Nano-X system is a compact design that is light weight combining a patient rotation system with a vertical 6 MV fixed beam. In this paper, we present the Nano-X system design configuration, an estimate of the system dimensions and its potential impact on shielding cost reductions. We provide an assessment of implementing such a radiotherapy system clinically, its advantages and disadvantages compared to a compact conventional gantry rotating linac. The Nano-X system has several differentiating features from current radiotherapy systems, it is [1] compact and therefore can fit into small vaults, [2] light weight, and [3] engineering efficient, i.e., it rotates a relatively light component and the main treatment delivery components are not under rotation (e.g., DMLCs). All these features can have an impact on reducing the costs of the system. In terms of shielding requirements, leakage radiation was found to be the dominant contributor to the Nano-X vault and as such no primary shielding was necessary. For a low leakage design, the Nano-X vault footprint and concrete volume required is 17 m2 and 35 m3 respectively, compared to 54 m2 and 102 m3 for a conventional compact linac vault, resulting in decreased costs in shielding. Key issues to be investigated in future work are the possible patient comfort concerns associated with the patient rotation system, as well as the magnitude of deformation and subsequent adaptation requirements

    Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies.

    Get PDF
    PURPOSE: The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. METHODS: From August 1-14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. RESULTS: The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. CONCLUSIONS: There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the clinical impact of breathing guidance, along with the health technology assessment to determine the advantages and disadvantages of breathing guidance

    A systematic review of assessment approaches to predict opioid misuse in people with cancer.

    Full text link
    CONTEXT: Cancer prevalence is increasing, with many patients requiring opioid analgesia. Clinicians need to ensure patients receive adequate pain relief. However, opioid misuse is widespread, and cancer patients are at risk. OBJECTIVES: This study aims (1) to identify screening approaches that have been used to assess and monitor risk of opioid misuse in patients with cancer; (2) to compare the prevalence of risk estimated by each of these screening approaches; and (3) to compare risk factors among demographic and clinical variables associated with a positive screen on each of the approaches. METHODS: Medline, Cochrane Controlled Trial Register, PubMed, PsycINFO, and Embase databases were searched for articles reporting opioid misuse screening in cancer patients, along with handsearching the reference list of included articles. Bias was assessed using tools from the Joanna Briggs Suite. RESULTS: Eighteen studies met the eligibility criteria, evaluating seven approaches: Urine Drug Test (UDT) (n = 8); the Screener and Opioid Assessment for Patients with Pain (SOAPP) and two variants, Revised and Short Form (n = 6); the Cut-down, Annoyed, Guilty, Eye-opener (CAGE) tool and one variant, Adapted to Include Drugs (n = 6); the Opioid Risk Tool (ORT) (n = 4); Prescription Monitoring Program (PMP) (n = 3); the Screen for Opioid-Associated Aberrant Behavior Risk (SOABR) (n = 1); and structured/specialist interviews (n = 1). Eight studies compared two or more approaches. The rates of risk of opioid misuse in the studied populations ranged from 6 to 65%, acknowledging that estimates are likely to have varied partly because of how specific to opioids the screening approaches were and whether a single or multi-step approach was used. UDT prompted by an intervention or observation of aberrant opioid behaviors (AOB) were conclusive of actual opioid misuse found to be 6.5-24%. Younger age, found in 8/10 studies; personal or family history of anxiety or other mental ill health, found in 6/8 studies; and history of illicit drug use, found in 4/6 studies, showed an increased risk of misuse. CONCLUSIONS: Younger age, personal or familial mental health history, and history of illicit drug use consistently showed an increased risk of opioid misuse. Clinical suspicion of opioid misuse may be raised by data from PMP or any of the standardized list of AOBs. Clinicians may use SOAPP-R, CAGE-AID, or ORT to screen for increased risk and may use UDT to confirm suspicion of opioid misuse or monitor adherence. More research into this important area is required. SIGNIFICANCE OF RESULTS: This systematic review summarized the literature on the use of opioid misuse risk approaches in people with cancer. The rates of reported risk range from 6 to 65%; however, true rate may be closer to 6.5-24%. Younger age, personal or familial mental health history, and history of illicit drug use consistently showed an increased risk of opioid misuse. Clinicians may choose from several approaches. Limited data are available on feasibility and patient experience. PROSPERO registration number. CRD42020163385

    Impact of the MLC on the MRI field distortion of a prototype MRI-linac.

    Get PDF
    PURPOSE: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality. METHODS: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0 T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps of the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30 cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300 μT. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200 cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20 cm(2), to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B0 of 0.5, 1.0, and 1.5 T, to estimate how the MLC impact changes with B0. RESULTS: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was generally smaller in the perpendicular beam orientation. The peak-to-peak DSV distortion was below 300 μT at SID≥130 cm (perpendicular) and SID≥140 cm (inline) for the 1.0 T design. (4) The simulation of different treatment fields was identified to cause dynamic changes in the field distribution. However, the estimated residual distortion was below 1.2 mm geometric distortion at SID≥120 cm (perpendicular) and SID≥130 cm (inline) for a 10 mT/m frequency-encoding gradient. (5) Due to magnetic saturation of the MLC materials, the field distortion remained constant at B0>1.0 T. CONCLUSIONS: This work shows that the MRI field distortions caused by the MLC cannot be ignored and must be thoroughly investigated for any MRI-linac system. The numeric distortion values obtained for our 1.0 T magnet may vary for other magnet designs with substantially different fringe fields, however the concept of modest increases in the SID to reduce the distortion to a shimmable level is generally applicable

    IGRT and motion management during lung SBRT delivery.

    Get PDF
    Patient motion can cause misalignment of the tumour and toxicities to the healthy lung tissue during lung stereotactic body radiation therapy (SBRT). Any deviations from the reference setup can miss the target and have acute toxic effects on the patient with consequences onto its quality of life and survival outcomes. Correction for motion, either immediately prior to treatment or intra-treatment, can be realized with image-guided radiation therapy (IGRT) and motion management devices. The use of these techniques has demonstrated the feasibility of integrating complex technology with clinical linear accelerator to provide a higher standard of care for the patients and increase their quality of life

    Optimizing 4D Cone Beam Computed Tomography Acquisition by Varying the Gantry Velocity and Projection Time Interval

    Get PDF
    Four Dimensional Cone Beam Computed Tomography (4DCBCT) is an emerging clinical image guidance strategy for tumour sites affected by respiratory motion. In current generation 4DCBCT techniques, both the gantry rotation speed and imaging frequency are constant and independent of the patient's breathing which can lead to projection clustering. We present a Mixed Integer Quadratic Programming (MIQP) model for Respiratory Motion Guided-4DCBCT (RMG-4DCBCT) which regulates the gantry velocity and projection time interval, in response to the patient's respiratory signal, so that a full set of evenly spaced projections can be taken in a number of phase, or displacement, bins during the respiratory cycle. In each respiratory bin, an image can be reconstructed from the projections to give a 4D view of the patient's anatomy so that the motion of the lungs, and tumour, can be observed during the breathing cycle. A solution to the full MIQP model in a practical amount of time, 10 seconds, is not possible with the leading commercial MIQP solvers, so a heuristic method is presented. Using parameter settings typically used on current generation 4DCBCT systems (4 minute image acquisition, 1200 projections, 10 respiratory bins) and a patient with a four second breathing period, we show that the root mean square (RMS) of the angular separation between projections with displacement binning is 2:7 degrees using existing constant gantry speed systems and 0:6degrees using RMG-4DCBCT. For phase based binning the RMS is 2:7degrees using constant gantry speed systems and 2:5 degrees using RMG-4DCBCT. The optimization algorithm presented is a critical step on the path to developing a system for RMG-4DCBCT

    Reducing 4DCBCT imaging time and dose: the first implementation of variable gantry speed 4DCBCT on a linear accelerator.

    Get PDF
    Four dimensional cone beam computed tomography (4DCBCT) uses a constant gantry speed and imaging frequency that are independent of the patient's breathing rate. Using a technique called respiratory motion guided 4DCBCT (RMG-4DCBCT), we have previously demonstrated that by varying the gantry speed and imaging frequency, in response to changes in the patient's real-time respiratory signal, the imaging dose can be reduced by 50-70%. RMG-4DCBCT optimally computes a patient specific gantry trajectory to eliminate streaking artefacts and projection clustering that is inherent in 4DCBCT imaging. The gantry trajectory is continuously updated as projection data is acquired and the patient's breathing changes. The aim of this study was to realise RMG-4DCBCT for the first time on a linear accelerator. To change the gantry speed in real-time a potentiometer under microcontroller control was used to adjust the current supplied to an Elekta Synergy's gantry motor. A real-time feedback loop was developed on the microcontroller to modulate the gantry speed and projection acquisition in response to the real-time respiratory signal so that either 40, RMG-4DCBCT40, or 60, RMG-4DCBCT60, uniformly spaced projections were acquired in 10 phase bins. Images of the CIRS dynamic Thorax phantom were acquired with sinusoidal breathing periods ranging from 2 s to 8 s together with two breathing traces from lung cancer patients. Image quality was assessed using the contrast to noise ratio (CNR) and edge response width (ERW). For the average patient, with a 3.8 s breathing period, the imaging time and image dose were reduced by 37% and 70% respectively. Across all respiratory rates, RMG-4DCBCT40 had a CNR in the range of 6.5 to 7.5, and RMG-4DCBCT60 had a CNR between 8.7 and 9.7, indicating that RMG-4DCBCT allows consistent and controllable CNR. In comparison, the CNR for conventional 4DCBCT drops from 20.4 to 6.2 as the breathing rate increases from 2 s to 8 s. With RMG-4DCBCT, the ERW in the direction of motion of the imaging insert decreases from 2.1 mm to 1.1 mm as the breathing rate increases from 2 s to 8 s while for conventional 4DCBCT the ERW increases from 1.9 mm to 2.5 mm. Image quality can be controlled during 4DCBCT acquisition by varying the gantry speed and the projection acquisition in response to the patient's real-time respiratory signal. However, although the image sharpness, i.e. ERW, is improved with RMG-4DCBCT, the ERW depends on the patient's breathing rate and breathing regularity

    Passive magnetic shielding in MRI-Linac systems.

    Get PDF
    Passive magnetic shielding refers to the use of ferromagnetic materials to redirect magnetic field lines away from vulnerable regions. An application of particular interest to the medical physics community is shielding in MRI systems, especially integrated MRI-linear accelerator (MRI-Linac) systems. In these systems, the goal is not only to minimize the magnetic field in some volume, but also to minimize the impact of the shield on the magnetic fields within the imaging volume of the MRI scanner. In this work, finite element modelling was used to assess the shielding of a side coupled 6 MV linac and resultant heterogeneity induced within the 30 cm diameter of spherical volume (DSV) of a novel 1 Tesla split bore MRI magnet. A number of different shield parameters were investigated; distance between shield and magnet, shield shape, shield thickness, shield length, openings in the shield, number of concentric layers, spacing between each layer, and shield material. Both the in-line and perpendicular MRI-Linac configurations were studied. By modifying the shield shape around the linac from the starting design of an open ended cylinder, the shielding effect was boosted by approximately 70% whilst the impact on the magnet was simultaneously reduced by approximately 10%. Openings in the shield for the RF port and beam exit were substantial sources of field leakage; however it was demonstrated that shielding could be added around these openings to compensate for this leakage. Layering multiple concentric shield shells was highly effective in the perpendicular configuration, but less so for the in-line configuration. Cautious use of high permeability materials such as Mu-metal can greatly increase the shielding performance in some scenarios. In the perpendicular configuration, magnetic shielding was more effective and the impact on the magnet lower compared with the in-line configuration

    Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling

    Get PDF
    PURPOSE: Cone-beam CT (CBCT) is a widely used imaging modality for image-guided radiotherapy. Most vendors provide CBCT systems that are mounted on a linac gantry. Thus, CBCT can be used to estimate the actual 3-dimensional (3D) position of moving respiratory targets in the thoracic/abdominal region using 2D projection images. The authors have developed a method for estimating the 3D trajectory of respiratory-induced target motion from CBCT projection images using interdimensional correlation modeling. METHODS: Because the superior-inferior (SI) motion of a target can be easily analyzed on projection images of a gantry-mounted CBCT system, the authors investigated the interdimensional correlation of the SI motion with left-right and anterior-posterior (AP) movements while the gantry is rotating. A simple linear model and a state-augmented model were implemented and applied to the interdimensional correlation analysis, and their performance was compared. The parameters of the interdimensional correlation models were determined by least-square estimation of the 2D error between the actual and estimated projected target position. The method was validated using 160 3D tumor trajectories from 46 thoracic/abdominal cancer patients obtained during CyberKnife treatment. The authors' simulations assumed two application scenarios: (1) retrospective estimation for the purpose of moving tumor setup used just after volumetric matching with CBCT; and (2) on-the-fly estimation for the purpose of real-time target position estimation during gating or tracking delivery, either for full-rotation volumetric-modulated arc therapy (VMAT) in 60 s or a stationary six-field intensity-modulated radiation therapy (IMRT) with a beam delivery time of 20 s. RESULTS: For the retrospective CBCT simulations, the mean 3D root-mean-square error (RMSE) for all 4893 trajectory segments was 0.41 mm (simple linear model) and 0.35 mm (state-augmented model). In the on-the-fly simulations, prior projections over more than 60° appear to be necessary for reliable estimations. The mean 3D RMSE during beam delivery after the simple linear model had established with a prior 90° projection data was 0.42 mm for VMAT and 0.45 mm for IMRT. CONCLUSIONS: The proposed method does not require any internal/external correlation or statistical modeling to estimate the target trajectory and can be used for both retrospective image-guided radiotherapy with CBCT projection images and real-time target position monitoring for respiratory gating or tracking.NHMRC, National Research Foundation of Kore
    • …
    corecore