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ABSTRACT 

 

Purpose: Cone-beam CT (CBCT) is a widely used imaging modality for image-guided radiotherapy (IGRT). Most 

vendors provide CBCT systems that are mounted on a linac gantry. Thus, CBCT can be used to estimate the actual 3-30 

dimensional (3D) position of moving respiratory targets in the thoracic/abdominal region using 2D projection images. 

We have developed a method for estimating the 3D trajectory of respiratory-induced target motion from CBCT 

projection images using interdimensional correlation modeling.  

Methods: Because the superior–inferior (SI) motion of a target can easily be analyzed on projection images of a 

gantry-mounted CBCT system, we investigated the interdimensional correlation of the SI motion with left–right (LR) 35 

and anterior–posterior (AP) movement while the gantry is rotating. A simple linear model and a state-augmented 

model were implemented and applied to the interdimensional correlation analysis, and their performance was 

compared. The parameters of the interdimensional correlation models were determined by least-square estimation of 

the 2D error between the actual and estimated projected target position. The method was validated using 160 3D 

tumor trajectories from 46 thoracic/abdominal cancer patients obtained during CyberKnife treatment. Our 40 

simulations assumed two application scenarios: (1) retrospective estimation for the purpose of moving tumor setup 

used just after volumetric matching with CBCT; and (2) on-the-fly estimation for the purpose of real-time target 

position estimation during gating or tracking delivery, either for full-rotation volumetric-modulated arc therapy 

(VMAT) in 60 s or a stationary six-field intensity-modulated radiation therapy (IMRT) with a beam delivery time of 

20 s. 45 

Results: For the retrospective CBCT simulations, the mean 3D root-mean-square error (RMSE) for all 4893 

trajectory segments was 0.41 mm (simple linear model) and 0.35 mm (state-augmented model). In the on-the-fly 

simulations, prior projections over more than 60° appear to be necessary for reliable estimations. The mean 3D 

RMSE during beam delivery after the simple linear model had established with a prior 90° projection data was 0.42 

mm for VMAT and 0.45 mm for IMRT.  50 
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Conclusions: The proposed method does not require any internal/external correlation or statistical modeling to 

estimate the target trajectory, and can be used for both retrospective image-guided radiotherapy with CBCT 

projection images and real-time target position monitoring for respiratory gating or tracking. 

 

Keywords: Image-guided radiation therapy, Cone-beam CT, respiratory motion, Real time tumor tracking 55 
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I. INTRODUCTION 60 

  In radiotherapy, accurate dose delivery is essential to sufficiently treat tumors and prevent side effects in 

healthy surrounding tissues that are exposed to radiation. However, tumor motion increases treatment uncertainty, 

and can lead to an increased radiation dose to normal tissues.1 Tumors in the thorax and abdomen are subject to such 

motion as a result of breathing and other intrafractional organ movements.   

Gating and tumor-tracking are useful methods for overcoming motion-related problems. These methods are 65 

widely applied in current image-guided radiotherapy (IGRT) techniques to ensure accurate dose delivery to the target 

and reduce exposure to healthy tissues.2, 3 

Real-time three-dimensional (3D) tumor position monitoring is a key technique for managing respiratory 

tumor motion in such gating and tracking approaches.4 Stereoscopic X-ray imaging systems such as CyberKnife 

(Accuray Inc., Sunnyvale, CA), Novalis Tx (BrainLab AG, Munich, Germany and Varian Medical Systems, Palo 70 

Alto, CA), and Mitsubishi/Hokkaido RTRT systems can locate tumors in 3D.5, 6 Stereoscopic imaging, which uses 

synchronous or alternate dual radiographic imagers, can theoretically locate 3D target positions via triangulation. 

However, stereoscopic imaging systems are not widely used because of their high cost, complexity of installation, 

and relatively small field of view.6 

Instead, monoscopic (i.e., single) kV imagers are commonly used in modern radiotherapy machines such as 75 

on-board imaging systems. Several methods for estimating the 3D target position using monoscopic images have 

recently been published.7-11 However, these methods are either somewhat inaccurate or do not provide results in real 

time. To overcome the drawbacks of these target estimation methods, probability-based methods that use single 

imagers have been developed for target localization.6,12 Poulsen et al.12 assumed 3D Gaussian distributions to 

determine the tumor position on projected images, allowing the tumor trajectory to be estimated accordingly, whereas 80 

Li et al.6 used a Bayesian approach to find a proper probability density function that accounted for real respiratory 

motions, which may be asymmetrical, multimodal, or hysteric. Additionally, Becker et al.13 and Park et al.14 

estimated 3D target trajectories geometrically based on the assumption that the 3D target positions are confined 

within some combination of respiratory, oscillatory, and fixed trajectories. 
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To a certain extent, respiratory motions are correlated either inter-dimensionally (e.g., correlation between 85 

superior–inferior (SI) and anterior–posterior (AP) motion) or with an external surrogate motion through the 

biomechanical characteristics of respiration. Thus, correlation models could effectively estimate the tumor positions 

from 2D projection images.  

In this work, we propose an interdimensional correlation model for estimating the 3D target trajectory of 

respiratory-induced motion using cone-beam CT (CBCT) projection images. We determine the projected target 90 

positions using real patient data that contain implanted markers. The 3D marker positions are reconstructed from the 

projected positions using least-squares estimation (LSE) to determine the parameters for the interdimensional 

correlation model.  

To evaluate the estimation performance of the proposed method, a series of simulations were performed 

under two application scenarios. First, for the purpose of a moving tumor setup used just after volumetric matching 95 

with CBCT, an interdimensional correlation model was built using full-rotation projection data from a CBCT scan. 

This model was then retrospectively applied to the projection data to estimate the 3D position of the tumor. Second, 

for the purpose of real-time target position monitoring during respiratory gating or tracking delivery for either 

volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT), an interdimensional 

correlation model was initialized using a limited range of angular projection data. This model was updated on-the-fly 100 

each time new projection data were added and used to estimate the 3D position of the new projection data. 
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Figure 1. Schematic of a CBCT projection imaging system that uses a single kV X-ray imager. 

 

  105 
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II. METHODS AND MATERIALS 

2.1. Interdimensional correlation model (IDCM) 

As shown in Fig. 1, a conventional geometric configuration of the OBI CBCT imaging system was used.15 

The target positions are represented by x, y, and z along the left–right (LR), superior-inferior (SI), and anterior-

posterior (AP) directions, respectively. The projected position p(xp, yp) on the image plane of a target position T(x, y, 110 

z) can be formulated by 
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In Eq. (1), the perspective term f(θi) is defined by: 115 
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where SAD and SID are the source-to-axis distance and the source-to-imager distance, respectively. θi represents the 

gantry angle of the ith view position. P(θi) is a projection operator that maps the 3D target position T(x, y, z) to the 120 

projected position p(xp, yp). In this study, SAD = 100 cm and SID = 150 cm. Equations (1) and (2) were used to 

simulate the CBCT data acquisition of a clinical 3D tumor trajectory. In addition, the relationship between y and yp (y 

= f(θi) × yp) from Eq. (1) was used to determine y from the projected position. 

 

To estimate the 3D trajectory of respiration-induced motion using CBCT projection images, each direction of 125 

the respiration-induced target motion was correlated interdimensionally. In particular, SI motion is always resolved 

on projection images, because it runs along the axis of rotation of the CBCT acquisition. Therefore, the SI motion 

was linked to other dimensions as:  
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where a=(ax, az)
T and b=(bx, bz)

T are the model parameters of this interdimensional correlation, and ̂ݕ̂ ,ݔ, and ̂ݖ are 

the estimated target positions as a function of time. 

Equation (3) represents a simple linear correlation model. To better model the correlation for hysteric 

motions, a state-augmented model has been proposed.16 We incorporated this state-augmented model to address the 

motion correlation in CBCT projection images. The state-augmented model (T(t) = ay(t) + by(t - τ) + c) can be 135 

written in our interdimensional correlation model as: 
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The time lag τ was set to 0.6 s, as will be discussed in Section 4. Note that the projection data y(t–τ) required 140 

for the 3D position estimation from the current projection data y(t) are previous data acquired τ = 0.6 s before. Thus, 

this computation does not cause any time delay for real-time applications. In this study, we applied both the simple 

linear form and the state-augmented form to the interdimensional correlation analysis of clinical data.  

 

For m given projections p(xp(θi), yp(θi);{t1:tm}) that are sequentially measured at various projection angles θi 145 

at time points ti, LSE was performed to determine the correlation model parameters: 
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P(θi) represents the projection operation, including rotation transforms, in Eqs. (1) and (2). We determined 150 

the model parameters (a, b) in Eq. (3) and (a, b, c) in Eq. (4) by solving the optimization problem in Eq. (5). The 

model parameters that minimize the square error ∥p(xp, yp; ti) - P(θi)(ݔො, ݕො, ̂ݖ)∥2 are selected as solutions. The 

method of least squares was employed to optimize the model parameters.  
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The unknown model parameters can be exactly calculated from p(xp(θi), yp(θi)), which are already known, 

and P(θi) and y, which can be derived from Eq. (1). However, the LSE of Eq. (5) cannot be obtained directly, because 155 

the perspective term f(θi) is not explicitly included. Accurate values of x and z are needed to calculate f(θi) accurately. 

However, x and z are unknown values that depend on the model parameters. Therefore, we employed an iterative 

approach to solve this problem. We initially approximated f(θi) as: 
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This approximation is reasonable, as the coordinates of the target position x and z are usually much smaller than 

the SAD. 

Using this approximation, the LSE determines the model parameters a, b, and c. After the first optimization of the 

model parameters, the x and z values are calculated again using Eqs. (3) and (4). Subsequently, f(θi) is updated using 165 

the new values of x and z, and on the process is repeated. This procedure was iterated five times, after which f(θi) had 

converged to within some preset tolerance. The overall process is schematically summarized in Fig. 2. 
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 170 

Figure 2. Process of the 3D position estimation algorithm 

 

2.2. Simulations 

To evaluate the estimation performance of the proposed method, a series of simulations were performed for 

two different application scenarios. 175 

First, to use the proposed method for a moving tumor setup before treatment, similar to CBCT use, an 

interdimensional correlation model was built using full-rotation projection data assumed to have been acquired from 
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a CBCT scan. The same model parameters were then retrospectively applied to all projection data to estimate their 

3D position. Second, for the purpose of real-time target position monitoring during gating or tracking delivery of 

either VMAT or IMRT, an interdimensional correlation model was initialized using a limited range of angular 180 

projection data. This model was updated on-the-fly each time new projection data were added, and then applied to 

estimate the 3D position of the new projection data. 

The ground truth data used for the simulation were the 3D target positions of 160 thoracic/abdominal 

trajectories from 46 patients. The targets were fiducial gold markers inserted near to the tumors. The time spent 

acquiring each trajectory varied from 8 to 110 min. The 3D position data of the trajectories were obtained from the 185 

CyberKnife Synchrony system at Georgetown University Hospital. The 3D positions were accurately calculated 

using an analytic formula for dual imaging systems.17 For the retrospective estimation, each trajectory was divided 

into 60-s segments to simulate 60-s CBCT scanning. Hence, we obtained 4893 60-s segmented trajectories and 4893 

simulated CBCT datasets. The mean and maximum range of motion for all 60-s segmented trajectories were 

calculated to be 2.5 mm and 26.3 mm (LR), 6.9 mm and 56.6 mm (SI), and 3.3 mm and 37.3 mm (AP), respectively. 190 

To acquire CBCT projection data numerically, we applied Eq. (1) to the 3D target position data. The 

simulated CBCT scanning conditions are shown in Fig. 3(a). The imager rotates 360° counter-clockwise (CCW) in 

60 s, starting with a horizontally aligned OBI system. An imaging frame rate of 10 Hz was assumed, resulting in 600 

projections per scan. The correlation model parameters were determined once using all 600 projected positions as 

training data, and then the same parameters were retrospectively applied to all projected positions to estimate the 3D 195 

target trajectory during CBCT scanning. 

For the on-the-fly application of the estimation method, realistic treatment cases of VMAT and IMRT were 

simulated. The VMAT was assumed to consist of full-rotation treatment, with delivery starting at a gantry angle of 

180° in the International Electrotechnical Commission (IEC) gantry scale and the rotation proceeding at 6°/s CCW. 

Thus, in regard to the kV imaging condition, the VMAT simulation was the same as the retrospective CBCT 200 

simulation, that is, one rotation took 60 s with a 10 Hz imaging rate. The geometry of the gantry and imaging system 

for the VMAT is shown in Fig. 3(b). The total number of trajectory segments was 4893 with 600 projections per 

trajectory, as for the retrospective simulation. For the conventional IMRT case, a treatment plan of six stationary 
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IMRT fields was simulated. The beam-on time of each field was 20 s. The angles of the kV imaging source at the six 

beam-on positions were θi = 30°, 90°, 150°, 210°, 270°, and 330°, as shown in Fig. 3(c). The beam-to-beam gantry 205 

rotation speed was assumed to be 6°/s. Therefore, the total imaging duration for one IMRT treatment was 175 s 

(initial imaging while rotating 0–30°, 20-s imaging at 30° during delivery of the first beam, imaging while rotating of 

30–90°, 20-s imaging at 90° during delivery of the second beam, and so on). As a result, 1750 projection data were 

obtained. A total of 1618 segmented trajectories were recorded in this simulation.  

In the VMAT and IMRT delivery, the 3D target position estimation first established the interdimensional 210 

model parameters from the first 25 projection data, obtained over 0–15° of the kV imaging source during 2.5 s. Each 

time new projection data were added, the model parameters were updated using the whole projection dataset, and the 

updated parameters were applied to estimate the 3D position of the new projection data. The update and estimation 

process was repeated for all data obtained from the 26th projection onwards. Only the simple linear correlation model 

was applied to evaluate the performance of on-the-fly estimation in the VMAT and IMRT cases. 215 

The accuracy of the trajectory estimations was evaluated using the maximum error and root-mean-square 

error (RMSE). The RMSE of a trajectory in the LR direction, for example, was calculated as:  
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where i depicts the projection number in the trajectory (i = 1, 2, ···, N) and j refers to the trajectory number (j = 1, 2, 220 

···, M). 

The maximum error is the largest absolute difference in terms of 3D distance between the estimated target 

position Xest and the actual target position Xact. 

 

 225 
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Figure 3. Geometries and scenarios of the kV imaging system for (a) retrospective CBCT simulation and on-the-fly 

simulation of (b) a full-rotation VMAT and (c) six-field IMRT. Note that the gantry angle (MV beam direction) 

began at 180° in the IEC 1217 scale, from which a kV imaging source was located laterally with 90° offset at 0° in 

the scale of this study, and rotated CCW. In (a), the inner red circle indicates the training model parameters using all 230 

of the projection data from one CBCT scanning. After model parameter training, 3D trajectory estimation was 

performed with all projection data using the model parameters already calculated, represented as the outer blue circle. 

In (b) and (c), the projection data on the red line (first 15° gantry rotation during 0–2.5 s) were only used for model 

parameter training. After 2.5 s training, the 3D position estimation began updating the model parameters using the 

accumulated data on the blue line. 235 

 

  



14 
 

III. RESULTS 

3.1. Retrospective estimation for CBCT scanning 

Fig. 4 shows the reconstructed target trajectories given by the interdimensional correlation models in (a) 240 

simple linear form and (b) state-augmented form in comparison with the actual trajectory of a well-behaved case. The 

high interdimensional linear correlation between the SI motion and AP or LR motions in this cases results in 

excellent estimations of AP and LR trajectories. In contrast, Fig. 5 shows a challenging case in which the periodicity 

of lung motion is seriously broken. In this instance, both correlation models give large estimation errors in the LR 

and AP directions. There could be several reasons for this poor estimation. During the initial 10 s, in particular, a 245 

noticeably large movement occurred in the LR direction, apparently due to patient body movement. Interdimensional 

correlation modeling cannot recover such a huge discrepancy. The overall respiratory pattern was irregular, which 

further reduced the interdimensional correlations and increased the estimation error. In addition, because the range of 

motion in the SI direction was smaller than that of either the AP or LR motion, small amounts of noise in the SI 

motion can propagate into large errors in the AP or LR motions. This should be considered a limitation of our 250 

method. However, in most cases of normal breathing, the range of motion in the SI direction is two or three times 

larger than that in either the AP or LR direction, as shown in Fig. 4. 
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Figure 4. Estimated target trajectory (black dotted line) and actual target trajectory (green) of a typical well-255 

estimated case applying (a) simple linear modeling (3D RMSE: 0.20 mm) and (b) state-augmented modeling (3D 

RMSE: 0.17 mm). 
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Figure 5. Estimated target trajectory (black dotted line) and actual target trajectory (green) applying (a) simple linear 260 

form (3D RMSE: 4.40 mm) and (b) state-augmented form for the maximum 3D RMSE case (3D RMSE: 4.33 mm). 
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Figs. 6 and 7 show the distribution of RMSE for the sampled points in all of the trajectories. The red solid 

line in the box represents the median values of the RMSE distribution. The upper line of the box indicates the 75th 

percentile, and the lower line indicates the 25th percentile. The whiskers extend to the most extreme data points that 265 

are not considered outliers. The outliers are individually plotted as red daggers. The upper whisker represents q75 + 

w(q75 – q25) and the lower whisker represents q25 – w (q75 – q25), where q25 and q75 are the 25th and 75th percentiles, 

respectively. The whisker length w was set to 1.5, which corresponds to approximately േ2.7σ and 99.3% coverage if 

the data are normally distributed. 

 270 

 

Figure 6. Distribution of RMSE of trajectories using (a) the simple linear model and (b) state-augmented model. 
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Figure 7. Distribution of maximum error values of all points using (a) the simple linear model and (b) state-275 

augmented model.  

 

Table I summarizes the performance of the interdimensional correlation models when using CBCT 

projection data to reconstruct target trajectories in each direction in terms of RMSE and maximum absolute error. 

This table also includes the lower bounds of the 95th percentiles of RMSE and maximum errors in consideration of 280 

signals away from noise. 

 

Table I. Mean and 95th percentile RMSE of the estimated trajectories and 95th percentile maximum error of 

estimated target points according to the simple linear model and state-augmented model. 

 Mean RMSE (mm)  95% RMSE (mm)  95% maximum error (mm) 

 LR SI AP 3D  LR SI AP 3D  LR SI AP 3D 

Simple linear  0.24 0.0065 0.29 0.41  0.78 0.022 1.05 1.30  2.47 0.0079 2.79 3.55 

State-augmented 0.21 0.0065 0.24 0.35  0.67 0.022 0.78 1.03  2.44 0.079 2.74 3.59 

 285 
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Table II summarizes the percentage of estimated trajectories within a specified margin of error. The 3D 

RMSE was less than 1 mm in 90.8% (simple linear model) and 94.7% (state-augmented model) of all trajectories. 

The state-augmented model demonstrated slightly higher performance. The 3D RMSE was less than 2 mm for 

approximately 99% of all cases. Approximately 61% of the thoracic/abdominal cases demonstrated a maximum 3D 

error of less than 1 mm, and approximately 84% of the cases demonstrated maximum 3D errors of less than 2 mm. 290 

 

Table II. Percentage of reconstructed trajectories with 3D RMSE and maximum errors of less than 1 mm and less 

than 2 mm. 

 3D RMSE  3D maximum error 

 <1 mm <2 mm  <1 mm <2 mm 

Simple linear (%) 90.8 98.8  61.2 83.6 

State-augmented (%) 94.7 99.1  61.5 83.9 

 

 295 

In Fig. 8, we compare the performance of the simple linear model and the state-augmented model by plotting 

the RMSE values for all of the estimated trajectories. The results are generally below the red line, which has a slope 

of 1, indicating that the state-augmented model gave more accurate estimates. 

 

 300 
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Figure 8. Scatter plots of RMSE of estimated trajectories determined using the state-augmented model and simple 

linear model in (a) the LR direction, (b) the AP direction, and (c) 3D. 

 

3.2. On-the-fly estimation for arc or stationary treatment cases 

The on-the-fly estimation method was applied to both VMAT and IMRT treatments. The average estimation 305 

errors of the resulting 3D trajectory segments are shown as a function of time and kV imaging source angle in Fig. 9. 

The estimation started after the acquisition of 25 training data during the first 2.5 s. The errors at the beginning of the 

estimation were quite substantial, and then rapidly decreased with time. This can be explained as follows. First, to 

build reliable model parameters, the correlation model needs a set of projection positions over at least one breathing 

cycle, which takes around 4–5 s. As can be seen in Fig. 9, after around 5 s, the estimation error decreased 310 

considerably. Second, the estimation error along the projection direction was initially high because of the limitations 

of the monoscopic approach. It can also be observed from Fig. 9 that, because the kV imaging source started to rotate 

from 0°, the unresolved lateral (LR) motion produced relatively large errors compared to the AP direction. These 

unresolved errors decreased rapidly until around 10 s, which indicates that projection data over an angle of 60° are 

needed to overcome the uncertainty of unresolved motion in the monoscopic approach. For the VMAT treatments, 315 

135 projection data over a rotated angle of 81° were needed to reduce the average 3D estimation error to less than the 

value of the average retrospective estimation error (0.33 mm). In the conventional IMRT simulation, 349 projection 

data and a rotation angle of 89.4° were needed for the same accuracy. Therefore, we can conservatively presume that 

the projected positions acquired over an angular span of 90° are necessary for reliable 3D position estimation. In real 

treatment applications, pretreatment imaging for 90° gantry rotation would be recommended for training the 320 

interdimensional correlation model. 

 In the IMRT simulation, the projection data were acquired over a 30° rotation before the first beam delivery, 

and then the projection angle was held for 20 s while the MV beam was on, which caused the estimation error to 

increase slowly over the first beam delivery (5–25 s), as can be seen in Fig. 9(b).  
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Unlike the VMAT case, the estimation error of the IMRT case increased over the entire treatment time (5–325 

175 s), even after more than 90° angular projection data had been acquired. This is likely to be because the delivery 

time of the IMRT was three times that of the VMAT and all projection data were used to determine the model 

parameters. The correlation model is likely to be stable over a VMAT delivery time of around 60 s, but begins to 

change over the 180 s of IMRT delivery, indicating that the training data for determining the model parameters 

should somehow be limited to the most recent data to effectively reflect changes in the respiratory pattern over time, 330 

a kind of baseline drift.  

To better understand the impact of the time interval of training data on the estimation performance of the 

model, additional VMAT and IMRT simulations were performed. Projection data over an angular range of 90° were 

assumed to have been acquired before the start of the estimation, as well as before the start of the beam delivery of 

each therapy. The model parameters were updated on-the-fly using only the most recently acquired projection data 335 

over a 90° range, rather than including the whole projection dataset. As a result, the VMAT training data included 

only the most recent 150 projection data acquired over an angle of 90° during a 15-s period, whereas the training data 

for the IMRT simulation varied to include the most recent 150–350 projection data because of the 20-s beam delivery 

interval of stationary IMRT. The estimation errors averaged over all trajectory segments are shown as a function of 

time and kV imaging source angle in Fig. 9(c) and (d). It can be seen that the estimation began after the pre-340 

acquisition of 90°-ranged projection data, and that the error was small at the beginning and constant over the entire 

duration of beam delivery. The 3D RMSE of VMAT and IMRT, averaged over all the trajectory segments, was 0.42 

mm and 0.45 mm, respectively, which is comparable to the 0.41 mm of the retrospective CBCT case (Table I).  

Finally, we also investigated how fast the estimation error would increase without updating the model 

parameters. This simulation assumed that, after establishing the model parameters with 90° rotational projections, the 345 

estimation continued for 10 min with the same model parameters. The results indicate that the mean 3D RMSE 

increased linearly at a rate of 0.07 mm per minute, reaching 1.1 mm after 10 min.  
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Figure 9. Estimation errors as a function of time and kV imaging source angle, averaged over all the simulation 

trajectories for (a) VMAT and (b) IMRT treatment cases with 2.5-s training data. (c) and (d) show the average error 350 

of trajectory estimation with model parameters trained with 150 s/90° pre-treatment imaging data and updated with 

the most recent 150–350 projection data over a 90° range. The diagonal red lines on the graphs represent kV source 

angles (θi) when the treatment (MV) beam was on. In the IMRT cases, (b) and (d), the black lines between red lines 

represent beam-to-beam gantry rotation between six IMRT fields. 

  355 



23 
 

IV. DISCUSSION 

In this study, we developed algorithms for estimating the 3D target position of thoracic/abdominal tumors 

from CBCT projection images. The proposed method uses interdimensional correlations between the LR, AP, and SI 

motions of the target and does not require external surrogates to estimate the target position. In addition, our method 

does not require probability distribution functions (PDF) of the motion, such as 3D Gaussian PDF approaches or the 360 

Bayesian approach. Breathing motion can be biomechanically interpreted as the repeated contraction and relaxation 

of the diaphragm and intercostal muscles. During inspiration, the diaphragm moves downward to increase the volume 

of the thoracic cavity, and the intercostal muscles pull the ribs up to expand the rib cage and further increase the 

volume. During expiration, the diaphragm and intercostal muscles relax, which returns the thoracic cavity to its 

original volume. The 3D motion of each respiration-induced target movement is correlated during these repetitive 365 

processes, and this correlation serves as the basis of our interdimensional model. Our approach estimates a target 

motion in thoracic and abdominal sites, in which the respiratory cycle is assumed to be generally periodic. 

The accuracy of the proposed estimation appears to be comparable to a more sophisticated estimation method 

based on 3D Gaussian PDFs or the Bayesian approach. The mean 3D RMSE values given by the Bayesian approach 

were reported to be 0.65 mm and 0.40 mm in phantom experiments on the lung and pancreas, respectively.4 A 3D 370 

Gaussian PDF using the same thoracic/abdominal data as in this study found the mean 3D RMSE for 

thoracic/abdominal motion to be 0.17 mm,12 whereas the mean 3D RMSE in this study was 0.35 mm. The Gaussian 

PDF method produced estimation results of higher accuracy because, in addition to interdimensional motion 

correlations, it identifies and utilizes motion confined to a single line or on a single plane. Even though more 

sophisticated methods provide higher overall estimation accuracy, one of the big advantages of the proposed method 375 

is its simplicity and estimation speed, which would enhance real-time tumor tracking by substantially reducing the 

computation time. The proposed method would be particularly advantageous to IGRT with CBCT imaging during 

treatments such as VMAT. 

Using MATLAB (Mathworks, Natick, MA) on a typical desktop PC environment, the computation time to 

estimate an entire CBCT trajectory composed of 600 projection data points in the retrospective CBCT simulation, 380 

averaged over the 4,893 trajectory segments, was 0.007 s for the interdimensional correlation method, some 200 
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times faster than the 1.53 s of the 3D Gaussian probability-based method. A recent implementation of the 3D 

Gaussian probability-based method in a fully integrated real-time 3D tumor monitoring system for radiotherapy 

reported a latency of 350 ms for the processes of kV imaging, marker segmentation, position estimation, and 

multileaf collimator adjustment.18 Thus, the time required for the position estimation itself would not affect the real-385 

time target position monitoring under efficient optimization of the algorithm. Although the error associated with the 

latency in real-time application can be effectively mitigated by applying prediction algorithms, it is important for 

overall tracking accuracy to minimize the latency first as small as possible. We expect the interdimensional 

correlation approach could further reduce the overall latency by ~50 ms. However, it should be further investigated 

whether this latency time-saving will be significant or not, with taking account of the estimation performances. 390 

Along with this fast estimation speed, the accuracy of the simulations for on-the-fly applications to VMAT and 

IMRT demonstrates the feasibility of our method in real-time application.  

In this study, the method was validated by performing simulation studies of 3D tumor trajectories from 

which the rotationally and sequentially projected target positions were calculated according to a typical OBI 

geometric configuration. Assuming that the fiducial marker was located at the tumor and the projection positions 395 

were measured during CBCT scanning, the estimation model was applied to the projection positions to reconstruct 

their 3D target position. By comparison with the 3D tumor trajectory assumed to be the ground truth, the 

reconstructed 3D target positions given by the proposed estimation method were validated.  

The proposed method was developed for applications using implanted fiducial markers as surrogates of the 

tumor position. However, implanted marker-based tumor tracking has several well-known limitations: for lung 400 

tumors, there is a risk of pneumothorax with subcutaneous implantation19 or migration issues with endobronchial 

marker placement20; for liver and pancreas tumors, implanted fiducial markers are generally imperative for tumor 

tracking, because the tumor contrast is poor as a result of a lack of soft tissue contrast. Direct tumor segmentation can 

overcome this issue, although there are various challenges in dealing with tumors other than solid lung tumors 

surrounded by low-density lung tissue,21, 22 or a well-demarcated Lipiodol near liver tumors23. 405 

For the clinical implementation of the proposed method, several issues still need to be addressed. First, 

accurate identification of the fiducial marker on the projected image is challenging when it is obscured by dense bony 
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structures. Therefore, efficient segmentation and an effective method for dealing with marker search failures are 

necessary. Second, because fiducial markers can only be used as a surrogate of the tumor position, the geometric 

offset of the markers from the tumor should be taken into account. Third, there will be a time delay associated with 410 

OBI image acquisition, marker identification, and the estimation model. As the overall latency may not be negligible, 

a robust prediction method that compensates for the system latency may be needed for respiratory gating or tumor 

tracking applications. Finally, the extra imaging dose associated with continuing X-ray imaging should also be 

optimized through a trade-off between the improved accuracy given by increasing the imaging frequency and the 

associated risks. A recent measurement study24 reported an imaging dose of 0.4–2.6 cGy per CBCT scan, which can 415 

be neglected compared to a large amount of the prescription dose of SBRT delivered in 3–5 fractions.  

In this study, the imaging frame rate was fixed at 10 Hz. Imaging frequency (f s-1), in combination with the 

time window (t s) and the number of training data points (n = f × t) used for the model parameters estimation, affects 

the accuracy associated with the estimation models using an interdimensional correlation of this study and an 

internal-external correlation between internal target position and external optical surrogate motion5. You can easily 420 

see that n (>10) would be enough for the simple linear square estimation to determine at most 2 or 3 model 

parameters. The time window may be adequately chosen if it covers several breathing cycles, around 10–20 s. 

Therefore, imaging frequency of 1–0.5 Hz would be appropriate. The time window also affects the accuracy of the 

on-the -fly estimation because it determines how often the correlation model is updated. Therefore, it is intimately 

related with how rapidly the correlation, i.e. the breathing pattern, would change. In most cases, changes in breathing 425 

pattern like baseline shift would be expected to happen eventually minute-by-minute rather than second-by-second. 

Indeed, at the end of the results section we already estimated how fast the estimation error would increase without 

updating the model, i.e., how quickly the correlation can change, and founded that the 3D RMSE was increasing at a 

rate of 0.07mm per minute, reaching 1.1 mm after 10 min. This fact was also confirmed with our pervious study5, a 

longer imaging interval increases the estimation error gradually because the wider time window for the model 430 

parameters estimation using a fixed number of training data (n = 20) slows down the model adaptation to the 

temporal change in the correlation, i.e., changes in breathing pattern such as baseline drift. This response delay of the 
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model adaptation adds ~0.2 mm on the 3D estimation error up to the 10-s imaging interval with the 200-s time 

window.  

Nonetheless, there exists a residual error in the motion estimation by the proposed method, and such a 435 

limitation is indeed intrinsic to all the monoscopic approaches. Stereoscopic imaging systems such as Cyberknife and 

ExacTrac do not suffer from this kind of problem, which is caused by imaging system alignment. However, this 

limitation can be somewhat mitigated by varying the projection angles, because the relationship between LR/AP 

motion and SI motion for a certain patient remains relatively stable from breathing cycle to cycle although there may 

be variations in the period length and inspiration depth of each breathing cycle. Thus, the unresolved motion in one 440 

direction becomes detectable by varying the projection angle, as in CBCT acquisition. Our earlier work,3 which 

compared the accuracy of target position estimation using an internal–external correlation model for monoscopic 

imaging and stereoscopic imaging, showed that the residual error of the model was much larger than the error 

induced by different imaging systems. 

As summarized in Table II, 99% of the reconstructed points in the trajectories have 3D RMSEs of less than 2 445 

mm. Because the dosimetric error in the radiation treatment is more closely associated with the RMSE error than 

with the maximum error, we believe that the proposed model would provide efficient real-time motion tracking for 

dose management. The proposed model is based on the assumption that there exists a high linear correlation between 

directional motions. This assumption is validated in Fig. 10 and Table III. 

Fig. 10 shows the histogram of interdimensional correlation coefficients, and a strong correlation is evident. 450 

More than half of the trajectories have correlation coefficients larger than 0.9, as summarized in Table III.  
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Figure 10. Distribution of absolute correlation coefficients between the (a) LR and SI directions and (b) AP and SI 

directions.  455 

 

Table III. Percentage of trajectories with correlation coefficients >0.5, >0.7, or >0.9. 

 LR – SI (%) AP – SI (%) 

> 0.5 87.9 84.7 

> 0.7 78.8 76.5 

> 0.9 58.2 62.0 

 

Suh et al.17 reported similar high linear correlation by using principal component analysis (PCA) with the 

same trajectory dataset, and demonstrated PCA can be used to separate nonlinear and hysteresis motion from linear 460 

motion, even though it cannot be used to differentiate between motion linearity and hysteresis. In this study, to 

improve estimation accuracy for hysteresis we implemented a state augmented method with a first order 

approximation. However the state augmented method resulted in a small gain in the estimation accuracy (4% in < 1 

mm 3D RMSE in Table II), suggesting that the motion hysteresis is complex with contributions of higher order. 

It is worth mentioning the effect of time lag on the accuracy of position estimation in the state-augmented 465 

model. We compared the mean 3D RMSEs of all the reconstructed trajectories with various time lags, and chose the 
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optimum time lag of 0.6 s. However, varying the time lag from 0.2–1 s produced a difference of less than 0.01 mm in 

terms of 3D RMSE. This is negligible compared to the planning target volume (PTV) margin, which is about 5 mm 

in standard thoracic/abdominal cases. 

As the initial large LR motion of the trajectory in Fig. 5 is unlikely to be caused by respiratory motion, the 470 

proposed method, which assumes a periodic and inter-dimensionally correlated respiratory motion, does not work 

well in this case. For any monoscopic estimation method, it is challenging to estimate the target positions accurately 

in cases where unpredictable sudden motion changes occur during CBCT imaging. In radiation treatment, a practical 

strategy to deal with such irregular breathing or sudden motion changes is to hold the beam delivery when the target 

position is outside a certain confidence interval (CI). For example, the 95th percentile of the 2D RMSE of ܘෝሺݔ௣,  ௣ሻ 475ݕ

could be used for the CI value; in the present study, this value was calculated to be 1.33 mm in the simple linear 

model.  

In addition, a visual comparison of the estimated projected trajectory with the measured one on the imager 

plane can provide an immediate and strongly intuitive evaluation of the estimation performance of the model. For 

example, Fig. 11 shows the actual and estimated projection data. This real-time visual comparison during treatment 480 

can be a useful cue for therapists to interrupt the beam delivery when a large discrepancy appears on the display. 

Finally, with the help of a marker segmentation tool, on-line application of the retrospective estimation 

immediately after a CBCT acquisition can provide tumor position and motion information. In respiratory motion-

inclusive approach, the mean tumor position can be used for moving tumor setup, or in respiratory gated treatment 

the end-exhale tumor location can be used for alignment of mobile tumor. Furthermore the motion information 485 

allows calculation of appropriate margins in motion-inclusive treatment, or evaluation of respiratory regularity before 

treatment and individualization of the gating window to accommodate daily baseline shifts. 
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Figure 11. Projected position ݔො௣ of estimated target trajectory (black dotted line) and actual projection data ݔ௣ (green) 

of (a) the typical case shown in Fig. 4 and (b) the case of maximum 3D RMSE shown in Fig. 5. 490 

 

5. CONCLUSION 

For respiratory motion that is fairly periodic and exhibits a high intercorrelation between directional 

components, the proposed method was shown to effectively estimate the tumor motion from CBCT projection data. 

The method does not require external surrogates or computationally expensive probabilistic models, and has the 495 

potential to be used for both retrospective IGRT with CBCT projection images and real-time target position 

monitoring for respiratory gating or tracking. 
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