
Optimizing 4D Cone Beam Computed Tomography

Acquisition by Varying the Gantry Velocity and

Projection Time Interval

Ricky T O’Brien1, Benjamin J Cooper1,2 and Paul J Keall1

1 Radiation Physics Laboratory, Sydney Medical School, The University of Sydney,

NSW 2006, Australia.
2 Department of Medical Physics, The Canberra Hospital, ACT 2605, Australia.

E-mail: ricky.obrien@sydney.edu.au

Abstract. Four Dimensional Cone Beam Computed Tomography (4DCBCT) is an

emerging clinical image guidance strategy for tumour sites affected by respiratory

motion. In current generation 4DCBCT techniques, both the gantry rotation speed and

imaging frequency are constant and independent of the patient’s breathing which can

lead to projection clustering. We present a Mixed Integer Quadratic Programming

(MIQP) model for Respiratory Motion Guided-4DCBCT (RMG-4DCBCT) which

regulates the gantry velocity and projection time interval, in response to the patient’s

respiratory signal, so that a full set of evenly spaced projections can be taken in a

number of phase, or displacement, bins during the respiratory cycle. In each respiratory

bin, an image can be reconstructed from the projections to give a 4D view of the

patient’s anatomy so that the motion of the lungs, and tumour, can be observed during

the breathing cycle. A solution to the full MIQP model in a practical amount of time,

10 seconds, is not possible with the leading commercial MIQP solvers, so a heuristic

method is presented. Using parameter settings typically used on current generation

4DCBCT systems (4 minute image acquisition, 1200 projections, 10 respiratory bins)

and a patient with a four second breathing period, we show that the root mean square

(RMS) of the angular separation between projections with displacement binning is

2.7◦ using existing constant gantry speed systems and 0.6◦ using RMG-4DCBCT. For

phase based binning the RMS is 2.7◦ using constant gantry speed systems and 2.5◦

using RMG-4DCBCT. The optimization algorithm presented is a critical step on the

path to developing a system for RMG-4DCBCT.
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1. Introduction

Lung cancer is the leading cause of cancer related death worldwide (18%) with 1.2

million new cases reported annually (Boyle & Levin 2008). Despite 36% to 71% of

lung cancer patients receiving radiotherapy (Delaney et al. 2005), and continous efforts

to improve treatment outcomes, the 5 year survival rate is only 16% (American Cancer

Society 2008, Cancer Facts and Figures). These patients urgently need better treatment

techniques and tools to improve survival rates.

An increase in the biologically effective tumour dose of 1-Gy results in a 4%

improvement in survival (Machtay et al. 2012). On the other hand, a 1-Gy decrease in

overall mean lung dose results in a 2% reduction in pneumonitis (Marks et al. 2010).

It is clear from these statistics that better targeted radiotherapy has the potential

to improve treatment outcomes. Image-guided radiotherapy (IGRT) has been used

to simultaneously increase tumour dose while minimising the dose to the surrounding

healthy tissue. IGRT is used by more than 93% of radiation oncologists in the United

States (Simpson et al. 2010). However, imaging techniques such as MRI, PET, CT and

CBCT are blurry or contain artifacts when there is significant respiratory motion. As a

consequence, it is difficult for a radiotherapist to accurately position their patient’s for

treatment which increases the likelihood that some of the radiation that is targeted at the

tumour will irradiate healthy lung tissue. An additional complication, is that although

the tumour is being treated with radiation, imaging techniques deliver radiation to the

parts of the patients anatomy that are being imaged. Radiotherapists must balance

the increased radiation delivered to the patient from imaging with the reduction in

treatment margins expected from the use of the imaging technique.

CBCT images can be obtained using the kilovoltage imagers attached to linear

accelerators and are used in the treatment room by radiotherapists to position their

patients for treatment. The gantry, containing the X-ray source and detector, is rotated

around the anatomy during which a series of approximately 1200 cone shaped projections

are taken, see figure 1. The projections are then reconstructed using the Feldkamp-

Davis-Kress (FDK) algorithm to give a 3D view of the patient’s anatomy (Feldkamp

et al. 1984).

4DCBCT provides a video, or movie, of the patient’s anatomy. The motion of the

abdomen, lungs and tumour can be observed during the breathing cycle. To acquire

4D images, the respiratory cycle is separated into respiratory bins such as inhale limit,

exhale limit and at different stages between the two limits. For 4DCBCT imaging a full

set of projections are collected in each respiratory bin so that a four dimensional view

of the changing anatomy can be obtained. First generation 4DCBCT was published

between 2003 and 2005 (Taguchi 2003, Sonke et al. 2005), with the first clinical release

in 2010 by Elekta (Stockholm Sweden).

In this paper we describe why projections are clustered during 4DCBCT image

acquisition. We introduce a novel Mixed Integer Quadratic Programming (MIQP)

optimization model for Respiratory Motion Guided 4DCBCT (RMG-4DCBCT) that
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Figure 1. Left (A): Diagram of the projection geometry for CBCT imaging showing

the first (P1) projection and ith(Pi) projection. The gantry rotates around the target

at a constant velocity with a constant pulse rate between projections. Right (B): A

photograph of a linear accelerator used in radiotherapy with the kilovoltage imager.

regulates the gantry velocity and projection time interval with the aim of reducing

the variability of the angular separation between projections compared to conventional

4DCBCT techniques.

2. 4DCBCT Projection Clustering

4DCBCT imaging attempts to produce images showing the motion of the lungs, and

tumour, during the breathing cycle. The aim is to collect enough projections in each

respiratory bin, with relatively even angular separation, to reconstruct an image. Within

each respiratory bin, there is limited anatomical motion, so blurring and artefacts in

the resulting image are reduced. Three dimensional images are reconstructed in each

respiratory bin and a video is created showing a 4D view of the anatomy.

Common to all current 4DCBCT systems is the use of a constant angular velocity

of the gantry with a constant projection pulse rate. The gantry is rotated around the

patient at a much slower rate than for 3DCBCT imaging. After the projections have

been collected, they are compared with the recorded breathing trace, which is either

derived from the images themselves or a respiratory sensor (e.g the Real-Time Position

Management (RPM) system from Varian Medical Systems), and then post-processed

into respiratory bins.

The use of a constant angular velocity results in clustering of projections. Figure

2 is an example of projection clustering using parameter settings typically used with

the current generation of 4DCBCT systems from Elekta. In this example a sinusoidal

breathing wave is used for a patient with a four second breathing period. The x-axis

tick marks correspond to the time at which a projection is taken if a pulse rate of 0.2s

is used. The projections corresponding to displacement bins 1, 5 and 8 are marked in
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cyan, green and magenta respectively. If the gantry is rotated with an angular velocity

of 1.5◦/s and a projection is taken every 0.2 seconds there will be 1200 projections in

total taken over 4 minutes. If we analyse the displacement bin at exhale limit (cyan),

then either 4 or 5 projections, with an angular separation of 0.9◦ to 1.2◦, will be taken in

the 0.82 seconds at exhale limit. The patient’s breathing will not enter the exhale limit

respiratory bin for a further 3.18 seconds in which time the gantry moves 4.77◦. This

process will be repeated with a cluster of 4 or 5 projections followed by a gap of at least

4.77◦ before the next cluster of projections. A polar plot showing the gantry angle for

each projection in displacement bin 1 is the cyan polar plot in figure 2. In total there

will be 240 projections in 60 clusters if 4 projections are taken per respiratory bin. In

the worst case scenario there will be 5 projections per respiratory bin resulting in 300

projections in displacement bin 1.

Clustering of projections results in a higher radiation dose to the patient for a small

improvement in image quality as the clustered projections provide similar information

on the patients anatomy. In addition, it has been reported that streak artefacts occur

due to the clustering of projections using the FDK algorithm (Leng et al. 2008).

The green polar plot in figure 2 shows an example of missed projections. Even

though the polar plot has a consistent angular separation between projections, only

one projection exists per respiratory cycle. The patient has received a radiation dose

from 60 projections but there may not be enough projections to reconstruct an image of

suitable quality. This problem occurs because only 0.13 seconds is spent in displacement

bin 5 during inhale and a further 0.13 seconds during exhale. A 0.2 second projection

pulse rate can miss the displacement bin altogether. In our example a projection is

taken during exhale but not during inhale. In an extreme case, the displacement bin

can be missed during both inhale and exhale in consecutive cycles leading to large gaps

between projections. In the worst case, the respiratory bin could be missed during both

inhale and exhale resulting in no projections allocated to respiratory bin 5. Although

the missed projections could be sourced from a neighbouring respiratory bin, for optimal

image quality it is desirable to have all projections corresponding to the same respiratory

bin.

The magenta polar plot in figure 2 has a projection taken during both inhale and

exhale, resulting in 120 projections in total, but the projections are unevenly spaced.

For displacement bin 8 there may be enough projections to reconstruct an image, but if

the projections were more evenly spaced fewer projections would be required to obtain

an image with comparable quality.

3. Respiratory Motion Guided-4DCBCT (RMG-4DCBCT)

The aim of RMG-4DCBCT is to improve the angular separation between projections.

To do this, we use two additional degrees of freedom over current generation 4DCBCT

methods. The first degree of freedom is that rather than moving the gantry with a

constant angular velocity, we allow the motion of the gantry to be regulated within
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Figure 2. Example of clustered and missing projections with a sinusoidal breathing

wave and a four second breathing period. Top left: The patient’s breathing wave

with displacement on the vertical axis and time on the horizontal axis where the

breathing cycle is separated into 10 displacement bins. The percentages listed are the

approximate percentages of time spent in each displacement bin. The cyan, green and

magenta vertical lines correspond to projections that are allocated to respiratory bins

1, 5 and 8 respectively. The polar plots show the gantry angles at the projections

taken in respiratory bins 1 (cyan), 5 (green) and 8 (magenta) with a constant gantry

velocity of 1.5◦/s.

specified limits on maximum velocity and acceleration. The second degree of freedom

is that rather than using a constant projection pulse rate we allow the time interval

between projections to be varied.

The optimization model presented in this paper is just one aspect of a larger project

with the aim of developing a system that implements RMG-4DCBCT. A flowchart of

the process is given in figure 3. The patient’s breathing pattern is analysed and a

representative breathing trajectory is determined. We use the representative breathing

trajectory to compute the gantry velocity and projection time interval schedule using

(MIQP) techniques. We then monitor the patient’s breathing, moving the gantry

according to the real time breathing signal, to acquire the projections.
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Analyse breathing pattern and compute

a representative breathing trajectory

Optimize the gantry velocity and

projection time interval schedule

By following the respiratory signal, move the gantry

to the location of the next projection in the schedule

Get the next

projection

Acquire the projection

Are there any projections remaining?

Reconstruct the images in each respiratory bin

yes

no

Figure 3. A flowchart showing the main algorithm controlling RMG-4DCBCT.

4. Optimizing the Gantry Velocity and Projection Time Interval Schedule

Our initial focus is on the problem formulation without consideration of computational

efficiency. After formulating the problem, we will present a heuristic solution method

that produces a near optimal solution in under one second. As this is the first article

describing RMG-4DCBCT optimization, we will give a full detailed description of the

constraints rather than just listing them. To make the discussion easier to follow, we

will break the model into smaller components and discuss each in detail in the remainder

of this section.

4.1. Pre-processing to determine the time windows

We use respiratory bins within which there is negligible anatomic motion. The bins can

be based either on displacement or phase of the lungs or abdomen as measured by a

respiratory sensor. Once we obtain the patient’s breathing signal, we use it to compute

a set of time windows, Rb,j, which define the estimated entry and exit times for each

respiratory bin:

Rb,j = {tsb,j, teb,j} for b = 1, 2, . . . , N and j = 1, . . . , Nb, (1)

where b is the bth respiratory bin, j is the jth time that the patient’s breathing has

entered respiratory bin b, tsb,j is the start or entry time for the time window, teb,j is

the exit time for the time window, Nb is the number of time windows for bin b and

N is the number of respiratory bins. The time windows are computed numerically in

a pre-processing stage before image acquisition starts. Projections taken between tsb,j
and teb,j must be allocated to respiratory bin b and used to reconstruct the image for

respiratory bin b.
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4.2. Constraints on the minimum time between projections

If we assume that the time interval between projections, ∆tk, is to be determined as

part of the optimization and a projection is taken at time tk, then we have the following

equations and constraints governing time:

tk+1 = tk + ∆tk for k = 1, 2, . . . ,M − 1,

∆tk ≥ ∆tmin for k = 1, 2, . . . ,M,

where M =
∑N

b=1Mb is the total number of projections taken, Mb is the number of

projections taken in respiratory bin b and tM = tmax is the total image acquisition

time. The minimum time, ∆tmin, is the minimum time required for the detector to be

ready to record a second projection after taking a projection. This is an input into the

optimization and needs to be measured for each CBCT device. Current generation

scanners are capable of a projection frequency of greater than 10hz, so a value of

∆tmin = 0.1 will be used.

4.3. Constraints to sort projections into respiratory bins

If the time span between projections is constant, then we can assign the projections

to respiratory bins in a pre-processing phase. Unfortunately, assigning projections to

respiratory bins is much more difficult when the time span between projections is a

decision variable. To determine the respiratory bin that the projection taken at time

tk belongs, we introduce binary variables δb,j,k which take the value 1 if tk is in time

window Rb,j and zero otherwise:

tsb,jδb,j,k ≤ tk ≤ teb,j + (1− δb,j,k) tmax for all b, j and k,
N∑
b=1

Nb∑
j=1

δb,j,k = 1 for all k,

Nb∑
j=1

δb,j,k = δb,k for all b and k,

M∑
k=1

Nb∑
j=1

δb,j,k = Mb for all b, (2)

where δb,k is 1 if the projection taken at time tk is in respiratory bin b and zero otherwise.

Constraint 2 guarantees that projections are not missed and that exactly Mb projections

are taken in respiratory bin b.

4.4. Constraints on the motion of the gantry

For half fan acquisition the gantry rotates between 0◦ and 360◦. When the gantry hits

either 0◦ or 360◦ it must stop or change direction. Let θk be the position of the gantry

for the projection taken at time tk, then the limits on the gantry angle can be modelled

with:

0 ≤ θk ≤ 2π for all k.
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For full fan acquisition the gantry can rotate from 0◦ to 180◦, plus the fan angle, ω, so

we apply

0 ≤ θk ≤ π + ω for all k.

The gantry has mechanical constraints on maximum velocity and maximum acceleration.

The maximum velocity, θ̇max, in the clockwise direction can be different to the maximum

velocity in the anticlockwise direction. However, for safety reasons, the International

Electrotechnical Commission (I.E.C) specifies a limited of 6◦/s on the velocity of the

gantry. We model the maximum velocity constraint with

|θk+1 − θk| ≤ θ̇max∆tk for all k. (3)

Maximum acceleration, θ̈max, is influenced by gravity and other mechanical constraints

with the values varying with gantry angle. Values for acceleration have been measured at

between 1.8◦/s2 and 3.2◦/s2, with deceleration measured at between 3.4◦/s2 and 4.3◦/s2

for the Elekta Synergy linear accelerator (Boylan et al. 2011). Values for acceleration

and deceleration for non emergency stops on Varian Medical Systems TrueBeam are

around 12◦/s2 ‡. In this study, to simplify the model, we will assume that the maximum

acceleration is a constant for all gantry angles. Modelling the acceleration is achieved

by fitting a polynomial to three consecutive gantry angles and differentiating twice:

|2(θk+1 − θk)∆tk−1 − 2(θk − θk−1)∆tk| ≤ θ̈max

(
∆t2k−1∆tk + ∆t2k∆tk−1

)
,

for all k. Successive Linear Programming (SLP) is used to handle the acceleration

constraint.

4.5. Constraints to sort projections in increasing gantry angle order

To model the objectives we need the Mb gantry angles in each respiratory bin in

increasing order. We choose to use an assignment, or bipartite matching, formulation

to order the gantry angles. In each respiratory bin, b, we let θb,l be the ordered gantry

angles with θb,l+1 ≥ θb,l for all b and l = 1, 2, . . . ,Mb. We introduce binary variables

xb,k,l that take the value 1 if θk is the lth largest gantry angle in respiratory bin b and

zero otherwise:
M∑
k=1

θkxb,k,l = θb,l for all b and l, (4)

M∑
k=1

xb,k,l = 1 for all b and l,

Mb∑
l=1

xb,k,l = 1 for all b and k.

xb,k,l ≤ δb,k for all b, l and k.

‡ Personal communication with Scott Johnson, Sr Manager, Research Collaborations, Varian Medical

Systems, 5 September 2012.
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In equation (4) we have the product of a continuous and binary variable. We use the

following well know technique to linearise the product. Let x be a binary variable and

0 ≤ y ≤ ymax be a continuous variable, then the product z = xy can be linearised with

z ≥ 0, z ≤ ymax, z ≤ y and z ≥ y − (1− x)ymax.

4.6. Objectives

There are two objectives that we use:

(i) Given that we take Mb projections per respiratory bin, minimise the root mean

square (RMS) of the angular separation between projections. This will also require

an additional constraint on the total imaging time, tmax, to make sure that the

total imaging time is acceptable.

(ii) Minimise the total imaging time, tmax, where the imaging time is the total time

required to acquire a set of projections with a specified angular separation between

the projections.

4.6.1. Minimising the RMS of the angular separation between projections: The ideal

angular separation between projections is ∆θb = 2π/Mb. The RMS of the angular

separation between projections in bin b is given by

RMS2
b =

Mb−1∑
l=1

(θb,l+1 − θb,l −∆θb)
2 + (2π − (θb,Mb

− θb,0)−∆θb)
2

 /Mb, (5)

for all b. The objective can be written as

RMS2 = Minimise
N∑
b=1

RMS2
b . (6)

This is a quadratic objective and can be solved with the quadratic solvers in most

commercial MIQP optimization packages. As an alternative, we could minimise the

RMS from the ideal gantry angles

RMS2
b =

Mb∑
l=1

(θb,l − l∆θb)2
 /Mb for all b.

For full fan acquisition, the angular separation is ∆θb = (π + ω)/Mb, so that equation

(5) becomes

RMS2
b =

Mb−1∑
l=1

(θb,l+1 − θb,l −∆θb)
2 + (π + ω − (θb,Mb

− θb,0)−∆θb)
2

 /Mb,

for all b.
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4.6.2. Minimising the total imaging time, tmax: In this case, the objective is

minimise tM = minimise tmax. (7)

However, we need to specify additional constraints to guarantee that we collect sufficient

projections for image reconstruction. If we take Mb projections per respiratory bin,

with an angular separation of exactly ∆θb = 2π/Mb (for full fan acquisition ∆θb =

(π + ω)/Mb), then

Mb =
M∑
k=1

Nb∑
j=1

δb,j,k for all b, (8)

∆θb = θb,l+1 − θb,l for l = 1, 2, . . . ,Mb − 1, (9)

∆θb = 2π − (θb,Mb
− θb,0) for half fan acquisition. (10)

∆θb = π + ω − (θb,Mb
− θb,0) for full fan acquisition.

Alternatively we could introduce a range for the gantry angles by replacing equations

(9) and (10) with

l∆θb − ε ≤ θb,l ≤ l∆θb + ε for all l,

where ε is an allowable tolerance on the ideal gantry angle.

5. Solution Methods

The MIQP model has been implemented using the three leading commercial MIQP

solvers (ILOG CPLEX, XPRESS-MP and GUROBI). The linear relaxation of the

problem is poor and all three commercial solvers fail to obtain optimal solutions

to problems with any more than a small number of projections per respiratory bin.

Although obtaining a provably optimum solution is difficult, we can make considerable

progress using heuristic methods that generate a near optimal solution in a short period

of time.

We will call our heuristic solution method the single gantry rotation (SGR) heuristic

because the gantry is restricted to a single rotation. Details on the implementation of

the SGR heuristic together with details on how to simulate conventional 4DCBCT are

given in Appendix A. To assess the accuracy of the SGR heuristic a more complex

heuristic, the 2-opt exchange heuristic, that has a computation time of approximately

one day, has been implemented. The details of the 2-opt exchange heuristic are given

in Appendix A. We will analyse the performance of the SGR heuristic, conventional

4DCBCT and the 2-opt exchange heuristic.

6. Results and Analysis

We expect the RMS, as defined by equation 6, to be smaller for larger values of Mb. For

example, if we acquire Mb = 240 projections per respiratory bin the projections will be

closer together, and the RMS will likely be smaller, than if we acquire 60 projections per

respiratory bin. This makes it difficult to compare solution quality for different values
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of Mb. An alternative measure of the RMS can be obtained by scaling equation 6 to

give the scaled RMS

Scaled RMS = 100

[
N∑
b=1

RMS2
b /(∆θ

2
bN)

]1/2
.

A scaled RMS of zero means that there is perfect angular spacing between projections. A

scaled RMS of 100 means that the RMS between projections is ∆θb; we are likely to see

two, or more, projections with a similar gantry angle followed by a gap of approximately

2∆θb.

In our numerical experiments the default, or baseline, settings are Mb = 120 half

fan projections per respiratory bin, N = 10 respiratory bins (1200 projections in total),

the projections are taken over tmax = 240 seconds, the maximum gantry acceleration

is 1.8◦/s2 and the maximum gantry velocity is 6◦/s. The default settings represent the

settings used clinically on the Elekta 4DCBCT system with the acceleration limit the

smallest acceleration measured by (Boylan et al. 2011) and the I.E.C. velocity limit.

6.1. RMG-4DCBCT Compared with Conventional 4DCBCT

To examine the performance of RMG-4DCBCT compared to conventional 4DCBCT for

both current and future generation systems, we have run simulations with maximum

velocities of 6, 10, 15 and 30◦/s, and maximum accelerations of 1.8, 3, 6 and 12◦/s2.

We have also run simulations where the total number of projections have been reduced

to as low as 60 projections per respiratory bin. Table 1 compares the results between

RMG-4DCBCT using the SGR heuristic and conventional 4DCBCT. We report on the

results for displacement and phase binning in the next two sections.

6.1.1. Displacement binning: Increasing the maximum gantry acceleration from

1.8◦/s2 to 12◦/s2 improves the scaled RMS from 21.2 to 0.3 with RMG-4DCBCT (rows

1 to 4) while conventional 4DCBCT has a scaled RMS of 90.9. It should be noted

that conventional 4DCBCT has a different number of projections in each respiratory

bin while RMG-4DCBCT has exactly 120 projections per bin. Increasing the maximum

velocity of the gantry to 30◦/s does not improve the scaled RMS (rows 5 to 7). An

explanation is that the gantry makes only one rotation with an average angular velocity

of 1.5◦/s. Even if the gantry accelerates and decelerates it rarely goes above 6◦/s.

These results clearly show that increasing the maximum acceleration of the gantry is

more important than increasing the maximum velocity of the gantry.

Rows 8 to 10 correspond to 4, 6 and 8 respiratory bins. The results show that

conventional 4DCBCT gives a scaled RMS around 63 or 64 for all simulations while the

(unscaled) RMS increases with the number of respiratory bins. RMG-4DCBCT has a

lower scaled RMS when the number of respiratory bins are reduced. When the patient

has a longer breathing period, rows 11 to 13, the scaled RMS for conventional 4DCBCT

increases. The scaled RMS with the RMG-4DCBCT is much lower than the scaled RMS

for conventional 4DCBCT for all breathing periods used.
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Table 1. The scaled RMS and unscaled RMS in brackets for RMG-4DCBCT (using

the RMG heuristic) compared to conventional 4DCBCT. The patients breathing period

is ω seconds and the conventional 4DCBCT column with a * indicates that not all

respiratory bins had the same number of projections; for the patient with a breathing

period of two seconds two displacement bins had zero projections. NA indicates that

the simulation was not applicable for the parameter settings.

Proj Displacement Binning Phase Binning

Row ω Vel Acc per tmax Conven- RMG- Conven- RMG-

sec Bins ◦/s ◦/s2 bin sec tional* 4DCBCT tional 4DCBCT

1 4.0 10 6 1.8 120 240 90.9(2.7◦) 21.2(0.6◦) 90.0(2.7◦) 84.1(2.5◦)

2 4.0 10 6 3.0 120 240 90.9(2.7◦) 12.3(0.4◦) 90.0(2.7◦) 83.5(2.5◦)

3 4.0 10 6 6.0 120 240 90.9(2.7◦) 2.0(0.1◦) 90.0(2.7◦) 82.0(2.5◦)

4 4.0 10 6 12.0 120 240 90.9(2.7◦) 0.3(0.0◦) 90.0(2.7◦) 78.5(2.4◦)

5 4.0 10 10 1.8 120 240 90.9(2.7◦) 21.2(0.6◦) 90.0(2.7◦) 84.1(2.5◦)

6 4.0 10 15 1.8 120 240 90.9(2.7◦) 21.2(0.6◦) 90.0(2.7◦) 84.1(2.5◦)

7 4.0 10 30 1.8 120 240 90.9(2.7◦) 21.2(0.6◦) 90.0(2.7◦) 84.1(2.5◦)

8 4.0 4 6 1.8 120 240 62.8(1.3◦) 7.6(0.2◦) 75.2(2.3◦) 52.4(1.6◦)

9 4.0 6 6 1.8 120 240 64.2(1.4◦) 14.9(0.4◦) 83.3(2.5◦) 70.0(2.1◦)

10 4.0 8 6 1.8 120 240 64.1(2.7◦) 18.5(0.6◦) 87.6(2.6◦) 78.8(2.4◦)

11 6.0 10 6 1.8 120 240 91.0(2.0◦) 6.8(0.2◦) 127.4(3.8◦) 123.1(3.7◦)

12 3.3 10 6 1.8 120 240 71.7(2.2◦) 21.7(0.7◦) 73.6(2.2◦) 70.8(2.1◦)

13 2.0 10 6 1.8 120 240 35.9(0.5◦) 0.0(0.0◦) 0.0(0.0◦) 0.0(0.0◦)

14 4.0 10 6 1.8 60 120 90.9(5.5◦) 28.2(1.7◦) 90.0(5.4◦) 84.6(5.1◦)

15 4.0 10 6 1.8 200 400 90.9(1.6◦) 12.7(0.2◦) 90.0(1.6◦) 83.5(1.5◦)

16 4.0 10 6 1.8 120 160 NA NA 127.3(3.8◦) 113.5(3.8◦)

17 4.0 10 6 1.8 120 180 NA NA 116.2(3.5◦) 102.9(3.5◦)

18 4.0 10 6 1.8 120 200 NA NA 108.9(3.3◦) 84.8(3.3◦)

Decreasing the number of projections to 60 with an imaging time of 120 seconds,

row 14, or, increasing the number of projections to 200 with an imaging time of 400

seconds, row 15, has the same average time between projections, 0.2 seconds, as the

default case. Using RMG-4DCBCT we find the scaled RMS is smaller for Mb = 200

than for Mb = 60. This is because the projections are closer together and less extreme

changes in velocity and acceleration are required to spread out the projections.

6.1.2. Phase binning: When phase based binning is used the results follow a similar

pattern, but the improvement of RMG-4DCBCT over conventional 4DCBCT is not as

significant as the displacement binning results. For the default case, with displacement

binning, there is a reduction in the RMS of 77.4% while the reduction in the RMS for

phase binning is 6.6%. An explanation is that for the default case, with displacement

binning, only one projection per time window occurs for all time windows except the

time windows at inhale and exhale limit. In comparison, two projections are taken,

in a short time period, in each time window when phase based binning is used. Only

one gantry rotation is allowed so the velocity of the gantry is low, on average 1.5◦/s,
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Table 2. Comparison of RMG-4DCBCT heuristic methods. The scaled RMS (and

unscaled RMS in brackets) with the SGR heuristic and the 2-opt exchange heuristic.

In all simulations it was assumed that the patient had a four second breathing period

and there were 10 respiratory bins. Mb is the number of projections per respiratory

bin and tmax is the total imaging time.

tmax Vel Acc Displacement Binning Phase Binning

Mb sec ◦/s ◦/s2 SGR 2-opt SGR 2-opt

120 240 6 1.8 21.2(0.6◦) 21.2(0.6◦) 84.1(2.5◦) 84.1(2.5◦)

120 240 30 3.0 12.3(0.4◦) 12.3(0.4◦) 83.5(2.5◦) 81.6(2.5◦)

120 240 30 6.0 2.0(0.1◦) 2.0(0.1◦) 82.0(2.2◦) 73.2(2.2◦)

100 200 6 1.8 23.8(0.7◦) 23.8(0.7◦) 84.3(2.5◦) 84.3(2.5◦)

100 200 30 3.0 16.4(0.5◦) 16.4(0.5◦) 83.8(2.5◦) 83.6(2.5◦)

100 200 30 6.0 5.5(0.2◦) 5.5(0.2◦) 82.5(2.5◦) 78.9(2.4◦)

50 100 6 1.8 29.9(0.9◦) 29.9(0.9◦) 84.6(2.5◦) 84.6(2.5◦)

50 100 30 3.0 26.0(0.8◦) 26.0(0.8◦) 84.4(2.5◦) 84.4(2.5◦)

50 100 30 6.0 16.9(0.5◦) 16.9(0.5◦) 83.8(2.5◦) 83.8(2.5◦)

50 200 6 1.8 2.4(0.1◦) 0.2(0.0◦) 0.1(0.0◦) 0.0(0.0◦)

50 200 30 3.0 1.5(0.1◦) 1.2(0.0◦) 0.1(0.0◦) 0.0(0.0◦)

50 200 30 6.0 0.1(0.0◦) 0.0(0.0◦) 0.0(0.0◦) 0.0(0.0◦)

and the angular separation between the two projections in each time window is small.

The implication for phase based binning is that it is difficult to reduce the scaled

RMS without increasing the imaging time. The main advantage of RMG-4DCBCT

over conventional 4DCBCT is that RMG-4DCBCT guarantees 120 projections in every

respiratory bin while conventional 4DCBCT does not guarantee 120 projections per

respiratory bin.

When a patient has a two second breathing period, and phase based binning is

used, conventional 4DCBCT is optimal. In this case, one projection per time window

occurs and a constant angular velocity of 1.5◦/s positions the gantry in an ideal position

to take the next projection.

One benefit of phase based binning, over displacement binning, is that due to the

longer time windows for each respiratory bin we can reduce the imaging time. We

examine shorter time periods in the last three rows in table 1. The results show that

reducing the imaging time to 200 seconds does not significantly increase the scaled RMS

over the default, 240 second, imaging time. However, reducing the imaging time to 180

seconds, or less, results in a moderate increase in the scaled RMS.

6.2. The 2-opt Exchange Heuristic versus the SGR Heuristic

Table 2 gives the RMS and scaled RMS for the SGR heuristic and 2-opt exchange

heuristic for a variety of different parameter settings. In rows 1 to 9, with displacement

binning, the 2-opt exchange heuristic did not improve the solution where, on average,

one projection is taken per time window. However when there are only 50 projections in
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200 seconds, on average one projection every second time window, the 2-opt exchange

heuristic is able to improve the solution from the SGR heuristic. The explanation is

that there are many time windows that do not have projections allocated and the 2-opt

exchange heuristic is able to better determine the time windows that should not have

projections allocated.

It should be noted that the improvements to the solution are only small or moderate

when using the 2-opt exchange heuristic to improve the SGR heuristic. We therefore

expect the SGR heuristic to produce a good solution in most cases, with an acceptable

computation time, but further improvements are possible especially if the maximum

acceleration of the gantry is high.

6.3. Image Quality for Different Values of the Scaled RMS

To examine the image quality for different values of the scaled RMS the Catphan

phantom has been used to reconstruct CBCT images. The full data set of the Catphan

phantom consists of 608 half fan projections which we sample to produce the images in

this section. The results corresponding to row 1 in Table 1 are given in Figure 4. For

conventional 4DCBCT with displacement binning there is no guarantee of obtaining 120

projections in each respiratory bin, so we have selected the respiratory bins with the

least and most projections; both of these respiratory bins have a scaled RMS above the

RMS of 90.9 which is obtained across all 10 respiratory bins.

The image quality degrades for increased values of the scaled RMS with the streak

artefacts increasing with larger values of the scaled RMS. With displacement binning,

RMG-4DCBCT achieves better image quality than conventional. For conventional

4DCBCT with displacement binning, the respiratory bin with the least number of

projections (78 projections) has severe streak artefacts. This is primarily due to

insufficient data from the large gaps between the clusters of projections. For phase

binning, similar image quality is obtained with both RMG-4DCBCT and conventional

4DCBCT. However, these results represent a best case scenario for conventional

4DCBCT as the respiratory signal is sinusoidal and not irregular.

7. Discussion

Our results show that RMG-4DCBCT is a promising method for reducing the clustering

of projections that occurs in conventional 4DCBCT. We have shown that the RMS

between projections is reduced by 77.4% when using displacement binning with a 6.6%

reduction in RMS when phase based binning is used. We have demonstrated that a

high gantry acceleration is more important than a high gantry velocity, which is an

important consideration when designing hardware to implement RMG-4DCBCT.

Our analysis of images for different values of the gantry angle RMS in Figure 4

demonstrates that when projections are more uniformly spaced fewer projections are

required to produce images of suitable quality for use in radiotherapy. We also observed
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Best case scenario RMG-4DCBCT(Displacement)

120 proj’s (gantry angle RMS=0) 120 proj’s (gantry angle RMS=21.2)

RMG-4DCBCT(Phase) Conventional 4DCBCT(Displacement)

120 proj’s (gantry angle RMS=84.1) 78 proj’s (gantry angle RMS=109)

Conventional 4DCBCT(Displacement) Conventional 4DCBCT(Phase)

249 proj’s (gantry angle RMS=140) 120 proj’s (gantry angle RMS=90)

Figure 4. CBCT images of the Catphan phantom from the data in row 1 of Table 1.

For each pair of images, the image on the right is the difference image generated by

subtracting the image on the left from an image generated with the full 608 projection

dataset. The number of projections in each respiratory bin with conventional 4DCBCT

using displacement binning varies depending on the breathing rate; the bins with the

least and most projections have been used for conventional 4DCBCT with displacement

binning.

in Figure 4 that conventional 4DCBCT does not guarantee enough projections in each

respiratory bin to reconstruct an image. Our primary motivation for this study was

to obtain clinically useful images by delivering a lower radiation dose to the patient.

However, additional benefits of RMG-4DCBCT over conventional 4DCBCT is that the

images are of a higher quality when the same number of projections are used and every

respiratory bin will have the same number of projections.

Our results suggest that displacement binning is likely to produce better angular

separation between projections for 4DCBCT imaging, and could potentially produce

better quality images for the same number of projections, than phase based binning.

In addition, it has been concluded that displacement binning is more accurate than

phase binning in a phantom study comparing phase and displacement binning for

4DCT (Abdelnour et al. 2007). Although phase binning is common practice for 4DCT,

these results suggest that displacement binning is worth pursuing for both 4DCT and
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4DCBCT imaging. However, several practical considerations need to be addressed before

changing clinical practice and switching to displacement binning. These include the

shorter time period spent in the respiratory bins in the middle of the breathing cycle,

baseline drifts of the respiratory signal, the corresponding difficulties attempting to take

a projection in a smaller time window and problems associated with collecting missed

projections in the inhale or exhale limit respiratory bins if a patient takes a shallow

breath.

An additional complication is that it is unclear if errors could occur if phase binning

is used during treatment planning for 4DCT while displacement binning is used to

position the patient for treatment with 4DCBCT. If 4DCT images are obtained by

retrospectively sorting projections into respiratory bins, then the image quality using

both phase and displacement binning can be assessed on a patient by patient basis with

the best binning method being used during treatment to acquire 4DCBCT images.

From an optimization point of view further progress towards generating a global

optimal solution to the full MIQP model would be useful. For large MIQP models, a

global solution is often impossible to obtain so heuristic methods are used to generate a

near optimal solution with a short computation time. There are two avenues for future

work: (1) Generating a better solution to the full MIQP model without consideration of

computation time. Possible approaches include reformulating the model, cut generators

for the branch and bound algorithm and meta heuristics such as evolutionary algorithms.

Even if a solution takes days or months to compute, it gives useful insight into how

the SGR heuristic can be improved. (2) Develop novel heuristics that generate better

solutions to the MIQP than the SGR heuristic with a solution time of under 4 seconds.

Possible approaches include exchange heuristics or a tailored search algorithm. These

heuristics could replace the SGR heuristic in the implementation of RMG-4DCBCT.

Throughout this study we have made comparisons between conventional 4DCBCT

and RMG-4DCBCT when the same number of projections are acquired per respiratory

bin. That is, if conventional 4DCBCT acquires an average of 120 projections per

respiratory bin then we made a direct comparison with RMG-4DCBCT acquiring 120

projections per respiratory bin. In practice, with better angular separation between

projections using RMG-4DCBCT, fewer projections are required per respiratory bin

than for conventional 4DCBCT. For example, the phase based binning results had

a scaled RMS of around 85 because two projections were acquired per respiratory

cycle. However, we could acquire one projection per respiratory cycle, for a total of

50 respiratory cycles, to obtain a much smaller scaled RMS. In addition, to further

reduce imaging dose to the patient, RMG-4DCBCT could be used with modern iterative

reconstruction techniques that show promise in reducing the number of projections

required to reconstruct images (Bian et al. 2010).

One limitation of this study is that we have focused on sinusoidal breathing

traces rather than real patient breathing traces. In practice a representative breathing

trajectory will be used to optimize the gantry velocity and projection time interval

schedule with the maximum velocity and acceleration constraints being applied to
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the representative breathing trajectory. A sinusoidal breathing wave is a potential

candidate for the representative breathing trajectory with the computed gantry velocity

and projection time interval schedule being a function of the respiratory signal (e.g.

phase or displacement) and not time. When image acquisition starts the patient’s

actual respiratory signal is compared to the representative breathing trajectory with the

gantry’s velocity adjusted according to the real time respiratory signal. If the patient

starts breathing faster than the speed of the representative breathing trajectory then

the gantry is moved faster. If the patient starts breathing slower than the speed of the

representative breathing trajectory then the gantry is moved slower. On average, for the

default parameters, the gantry moves at 1.5◦/s so the patient would need to breathe four

times faster (i.e. a one second breathing period compared to a 4 second breathing period)

than the representative breathing trajectory to move the gantry at a speed close to 6◦/s.

A buffer on the maximum velocity and acceleration, or a faster representative breathing

trajectory, can be used to reduce, or eliminate, maximum velocity and acceleration

violations that could occur if the patient starts breathing very fast.

If the patient’s breathing becomes irregular, we stop acquisition, wait for the

patient’s breathing to settle down, recompute a new schedule and continue acquisition.

It is therefore important to be able to quickly recompute a projection schedule as any

delays increase the imaging time, and discomfort, to the patient. Ideally, this would

take less than one second, but the length of a breathing cycle, typically 4 seconds, is

acceptable. The SGR heuristic presented above has the advantage that a solution can

be obtained in under one second.

There have been some attempts to determine if breathing is irregular or if it is

chaotic (Tewatia et al. 2011). In either case, if breathing is irregular or chaotic, it is

very difficult to predict a patient’s breathing for one or two cycles ahead. Predicting

a patient’s breathing for the entire duration of a CBCT scan is even more difficult.

To overcome the problems associated with irregular breathing some studies have used

audio and visual queues to guide the patient’s breathing (Kini et al. 2003, George

et al. 2006, Venkat et al. 2008). These systems typically monitor external markers

on a patient’s abdomen to provide near real-time data on the patient’s breathing. A

representative breathing wave is computed during a training phase and then the patient

attempts to follow the representative breathing wave with both audio and visual queues.

In a study where 90 respiratory traces were acquired from 10 patients the root mean

squared variation in displacement is reduced from 0.16cm with free breathing to 0.08cm

with audiovisual biofeedback and the root mean squared variation in the breathing

period is reduced from 0.77s with free breathing to 0.2s with audiovisual biofeedback

(Venkat et al. 2008). However, there has not been a study to determine if audiovisual

biofeedback improves 4DCBCT imaging.

In the final implementation of RMG-4DCBCT system latencies need to be

considered. There are three dominate sources of latency: (1) The signal from the

respiratory system. One common respiratory monitoring system is the Varian RPM

system with a frequency of 33ms. (2) The time required to compare the real-time
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respiratory signal with the representative breathing trajectory is less than 10ms on

modern computers. (3) The time required to send a command to the gantry and for

the gantry to respond is currently unknown. The overall latency is unknown but, as

a guide, we can look at applications that incorporate an RPM sensor and move the

leaves on the multi leaf collimator where the delay has been measured at between 88.3

and 90.5ms (Duan et al. 2003). Errors arising due to these latencies can be mitigated

by predicting the respiratory signal so that the gantry can be moved accordingly. In

a study comparing four different prediction methods with a variety of different input

frequencies, over prediction intervals ranging in size from 0.2 to 0.6 seconds, it has been

shown that the prediction methods roughly halve the position errors compared to using

no prediction (Krauss et al. 2011).

8. Conclusions

We have described RMG-4DCBCT for the first time. RMG-4DCBCT uses the

respiratory signal to regulate the gantry velocity and projection time interval to improve

4DCBCT imaging. The method is a promising approach to reduce, or eliminate,

projection clustering that exists in current generation 4DCBCT systems. Because less

projections are required there is potential to reduce the overall imaging time and the

imaging dose to the patient.

This paper has focused on one aspect of RMG-4DCBCT which is to optimize

the gantry velocity and projection time interval schedule; a key step on the path to

implement RMG-4DCBCT. A simple heuristic method has been presented that can

generate a near optimal projection schedule in under one second. It was shown that

RMG-4DCBCT reduces the angular separation between projections over conventional

4DCBCT.
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Appendix A. Solution Methods

Appendix A.1. The Single Gantry Rotation (SGR) Heuristic

The heuristic presented in this section is used to generate an initial feasible solution

to the MIQP model. The heuristic can be implemented in under one second using
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the Newton Barrier method in most Quadratic Programming (QP) packages such as

CPLEX, XPRESS and GUROBI.

There are two simplifications to the model that eliminate the binary variables and

allow the problem to be solved efficiently. First, if we assume that a given number

of projections, K(b, j), will be taken in each time window, Rb,j, then we do not need

the binary variables, δb,j,k, that determine which respiratory bin the projections belong.

We can use K(b, j) in a pre-processing phase to determine the time window that the

projection taken at time tk belongs and then we apply the constraint

ts(b, j) ≤ tk ≤ te(b, j) for projection k in respiratory bin R(b, j).

The easiest way to allocate projections to time windows is to evenly distribute the

projections across the time windows, R(b, j). That is, we take bMb/Nbc projections

per time window with the remaining Mb − bMb/Nbc evenly spaced across the time

windows§. The maximum number of projections per time window can be calculated

using K(b, j) ≤ 1 + (teb,j − tsb,j)/∆tmin.

The second simplification eliminates the binary variables, xb,k,l, which were used in

section 4.5 to order the projections within each respiratory bin. Within each respiratory

bin, we force the gantry to take projections with an increasing gantry angle (i.e. only

one gantry rotation). That is, we apply the constraint θb,j+1 ≥ θb,j for all values of j.

This does not restrict the gantry from changing direction between respiratory bins; the

condition ensures that consecutive projections within the same respiratory bin are taken

in increasing gantry angle order. We use the notation M : k → (b, l) which maps a

projection, θk taken at time tk, to its corresponding ordered projection θb,l. That is,M
takes a value of k and maps it to a unique pair (b, l) so that θk = θb,l. Every k must map

to a unique pair (b, l) and every (b, l) has a corresponding value of k. We can create the

mapping M in a pre-processing phase before performing the optimization.

Pseudo code of the methods used to initialise M and K are given in algorithm 1.

Pseudo code to compute the objective given the mappings for M and K is given in

algorithm 2.

Appendix A.2. Conventional 4DCBCT

Current generation 4DCBCT techniques are based on a constant angular gantry velocity

with a constant projection pulse rate. The velocity of the gantry is calculated by dividing

360◦ by the total amount of time that is allocated at the start of 4DCBCT imaging to

acquire all of the projections (the imaging time). For example, if an imaging time of 240

seconds is used then the velocity of the gantry is 1.5◦/s. Similarly, the projection pulse

rate can be determined by dividing the imaging time by the total number of projections

(projections per bin multiplied by the number of respiratory bins). For example, if 10

respiratory bins are used with an average of 120 projections per bin then the projection

pulse rate is 0.2 seconds.

§ bxc means that we use the largest integer less than x.
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Algorithm 1 SGR Heuristic.

{Initialise K.}
for b = 1 to N do

n = bMb/Nbc; δn = Mb − nNb; δj =

Mb/δn

for j = 1 to Mb do

K(b, j) = n

end for

for i = 1 to δn do

j = b(i− 1)δjc; K(b, j) = K(b, j) + 1

end for

end for

{Initialise M.}
k = 0

for b = 1 to Mb do

L[b] = 0

end for

Order projection counts, K(b, j), from

lowest to highest tsb,j to get K′(b, j).
for all (b, j) in K′ do
for i = 1 to K′(b, j) do

l = L[b]; M(k) = (b, l); L[b] =

L[b] + 1; k = k + 1

end for

end for

Optimize(M,K)

Algorithm 2 Optimize(M,K).

{Check if values exist.}
if Cache.Contains(M,K) then

objective = Cache(M,K)

else

{Formulate QP by excluding sections

4.3 and 4.5.}
for k = 1 to M do

(b, l) = M(k)

Add constraint θb,l = θk
end for

k = 1

for b = 1 to N do

for j = 1 to Mb do

for i = 0 to K(b, j) do

Add constraint tsb,j ≤ tk ≤ teb,j
k = k + 1

end for

end for

end for

objective = Solve() - using XPRESS-

MP, CPLEX or GUROBI

Cache(M,K) = objective

end if

return objective

Appendix A.3. The 2-opt Exchange Heuristics

The k-opt exchange heuristic is a simple heuristic that performs a local search around a

known solution. More information on the implementation and design of meta heuristics

can be found in (Talbi 2009). For our application we keep the computation time down

by using k = 2. The 2-opt exchange heuristic systematically swaps two projections

from one time window to another by altering the mapping K, or, adjusting the order of

the mapping M. The new mappings for M and K are optimized and accepted as an

improved solution if the mapping improves the objective.

The 2-opt exchange heuristic is easy to implement but the solution time is too

slow to use in practice. The purpose is to perform a local search around the solution

obtained from the SGR heuristic and to determine if effort should be spent developing

more complicated heuristics. For each simulation it takes about one day of computation

time to prove that the solution is 2-optimal; meaning it is not possible to swap two
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projections and improve the solution.
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