508 research outputs found

    Where in the String Landscape is Quintessence

    Full text link
    We argue that quintessence may reside in certain corners of the string landscape. It arises as a linear combination of internal space components of higher rank forms, which are axion-like at low energies, and may mix with 4-forms after compactification of the Chern-Simons terms to 4D due to internal space fluxes. The mixing induces an effective mass term, with an action which {\it preserves} the axion shift symmetry, breaking it spontaneously after the background selection. With several axions, several 4-forms, and a low string scale, as in one of the setups already invoked for dynamically explaining a tiny residual vacuum energy in string theory, the 4D mass matrix generated by random fluxes may have ultralight eigenmodes over the landscape, which are quintessence. We illustrate how this works in simplest cases, and outline how to get the lightest mass to be comparable to the Hubble scale now, H01033eVH_0 \sim 10^{-33} {\rm eV}. The shift symmetry protects the smallest mass from perturbative corrections in field theory. Further, if the ultralight eigenmode does not couple directly to any sector strongly coupled at a high scale, the non-perturbative field theory corrections to its potential will also be suppressed. Finally, if the compactification length is larger than the string length by more than an order of magnitude, the gravitational corrections may remain small too, even when the field value approaches MPlM_{Pl}.Comment: 8 pages RevTeX; added references, matches published versio

    Constraints on AdS5AdS_5 Embeddings

    Get PDF
    We show that the embedding of either a static or a time dependent maximally 3-symmetric brane with non-zero spatial curvature kk into a non-compactified AdS5AdS_5 bulk does not yield exponential suppression of the geometry away from the brane. Implications of this result for brane-localized gravity are discussed.Comment: RevTeX, 9 pages (updated version v2, conclusions unchanged after extension to the non-static case

    Supersymmetric Gauge Theories with an Affine Quantum Moduli Space

    Full text link
    All supersymmetric gauge theories based on simple groups which have an affine quantum moduli space, i.e. one generated by gauge invariants with no relations, W=0, and anomaly matching at the origin, are classified. It is shown that the only theories with no gauge invariants (and moduli space equal to a single point) are the two known examples, SU(5) with 5-bar + 10 and SO(10) with a spinor. The index of the matter representation must be at least as big as the index of the adjoint in theories which have a non-trivial relation among the gauge invariants.Comment: Incorrect proof that theories with constraints must have mu >= mu(adj) replaced by a correct one (6 pages, uses revtex, amssymb, array

    Goldberger-Wise variations: stabilizing brane models with a bulk scalar

    Full text link
    Braneworld scenarios with compact extra-dimensions need the volume of the extra space to be stabilized. Goldberger and Wise have introduced a simple mechanism, based on the presence of a bulk scalar field, able to stabilize the radius of the Randall-Sundrum model. Here, we transpose the same mechanism to generic single-brane and two-brane models, with one extra dimension and arbitrary scalar potentials in the bulk and on the branes. The single-brane construction turns out to be always unstable, independently of the bulk and brane potentials. In the case of two branes, we derive some generic criteria ensuring the stabilization or destabilization of the system.Comment: 8 pages, 2 figures. 1 figure and one subsection added. version published on PR

    RS1 Cosmology as Brane Dynamics in an AdS/Schwarzschild Bulk

    Get PDF
    We explore various facets of the cosmology of the Randall-Sundrum scenario with two branes by considering the dynamics of the branes moving in a bulk AdS/Schwarzschild geometry. This approach allows us both to understand in more detail and from a different perspective the role of the stabilization of the hierarchy in the brane cosmology, as well as to extend to the situation where the metric contains a horizon. In particular, we explicitly determine how the Goldberger-Wise stabilization mechanism perturbs the background bulk geometry to produce a realistic cosmology.Comment: 9 pages, uses ReVTeX, no figure

    Super-acceleration as Signature of Dark Sector Interaction

    Full text link
    We show that an interaction between dark matter and dark energy generically results in an effective dark energy equation of state of w<-1. This arises because the interaction alters the redshift-dependence of the matter density. An observer who fits the data treating the dark matter as non-interacting will infer an effective dark energy fluid with w<-1. We argue that the model is consistent with all current observations, the tightest constraint coming from estimates of the matter density at different redshifts. Comparing the luminosity and angular-diameter distance relations with LambdaCDM and phantom models, we find that the three models are degenerate within current uncertainties but likely distinguishable by the next generation of dark energy experiments.Comment: 9 pages, 4 figures. v2: Added reference

    No-Go Theorem for Horizon-Shielded Self-Tuning Singularities

    Get PDF
    We derive a simple no-go theorem relating to self-tuning solutions to the cosmological constant for observers on a brane, which rely on a singularity in an extra dimension. The theorem shows that it is impossible to shield the singularity from the brane by a horizon, unless the positive energy condition (rho+p >= 0) is violated in the bulk or on the brane. The result holds regardless of the kinds of fields which are introduced in the bulk or on the brane, whether Z_2 symmetry is imposed at the brane, or whether higher derivative terms of the Gauss-Bonnet form are added to the gravitational part of the action. However, the no-go theorem can be evaded if the three-brane has spatial curvature. We discuss explicit realizations of such solutions which have both self-tuning and a horizon shielding the singularity.Comment: 7 pages, 4 figures, revtex; added reference and minor correction

    Energy scales in a stabilized brane world

    Full text link
    Brane world gravity looks different for observers on positive and negative tension branes. First we consider the well-known RS1 model with two branes embedded into the AdS_5 space-time and recall the results on the relations between the energy scales for an observer on the negative tension brane, which is supposed to be "our" brane. Then from the point of view of this observer we study energy scales and masses for the radion and graviton excitations in a stabilized brane world model. We argue that there may be several possibilities leading to scales of the order 1-10 TeV or even less for new physics effects on our brane. In particular, an interesting scenario can arise in the case of a "symmetric" brane world with a nontrivial warp factor in the bulk, which however takes equal values on both branes.Comment: 15 pages, corrected typos, enlarged conten

    Strings at future singularities

    Full text link
    We discuss the behaviour of strings propagating in spacetimes which allow future singularities of either a sudden future or a Big-Rip type. We show that in general the invariant string size remains finite at sudden future singularities while it grows to infinity at a Big-Rip. This claim is based on the discussion of both the tensile and null strings. In conclusion, strings may survive a sudden future singularity, but not a Big-Rip where they are infinitely stretched.Comment: REVTEX 4.0, 4 pages, no figures, references adde
    corecore