57 research outputs found

    The Influence of Pearlite Volume Fraction on Rayleigh Wave Propagation in A572 Grade 50 Steel

    Get PDF
    The acoustoelastic effect is the interaction between ultrasonic wave velocity and stress. To estimate the stress a perturbation signal is introduced and the shift in time of flight is measured at the receiving location. In addition to the stress, the wave velocity can be affected by the amount of phases in the material’s microstructure. This study investigates the changes in Rayleigh wave velocity for A572 grade 50 steel as a function of stress and pearlite phase volume fraction. In order to obtain different amounts of pearlite the samples are heat treated at 970 °C for time durations of 30 min, 1 hour, 2 hours and 4 hours and then furnace cooled. The acoustoelastic coefficient for 0.5 and 1 MHz perturbation frequency is calculated by uniaxial loading of each heat treated plate while measuring ultrasonic wave velocity. The results are compared for pearlite phase volume fraction obtained from optical microscopy and hardness measurements

    Acoustic Emission Signal of \u3cem\u3eLactococcus lactis\u3c/em\u3e before and after Inhibition with NaN\u3csub\u3e3\u3c/sub\u3e and Infection with Bacteriophage c2

    Get PDF
    The detection of acoustic emission (AE) from Lactococcus lactis, ssp lactis is reported in which emission intensities are used to follow and define metabolic activity during growth in nutrient broths. Optical density (OD) data were also acquired during L. lactis growth at 32°C and provided insight into the timing of the AE signals relative to the lag, logarithmic, and stationary growth phases of the bacteria. The inclusion of a metabolic inhibitor, NaN3, into the nutrient broth eliminated bacteria metabolic activity according to the OD data, the absence of which was confirmed using AE data acquisition. The OD and AE data were also acquired before and after the addition of Bacteriophage c2 in L. lactis containing nutrient broths during the early or middle logarithmic phase; c2 phage m.o.i. (Multiplicity of infection) was varied to help differentiate whether the detected AE was from bacteria cells during lysis or from the c2 phage during genome injection into the cells. It is proposed that AE measurements using piezoelectric sensors are sensitive enough to detect bacteria at the amount near 104 cfu/mL, to provide real time data on bacteria metabolic activity and to dynamically monitor phage infection of cells

    Steel bridge fatigue crack detection with piezoelectric wafer active sensors

    Full text link
    Piezoelectric wafer active sensors (PWAS) are well known for its dual capabilities in structural health monitoring, acting as either actuators or sensors. Due to the variety of deterioration sources and locations of bridge defects, there is currently no single method that can detect and address the potential sources globally. In our research, our use of the PWAS based sensing has the novelty of implementing both passive (as acoustic emission) and active (as ultrasonic transducers) sensing with a single PWAS network. The combined schematic is using acoustic emission to detect the presence of fatigue cracks in steel bridges in their early stage since methods such as ultrasonics are unable to quantify the initial condition of crack growth since most of the fatigue life for these details is consumed while the fatigue crack is too small to be detected. Hence, combing acoustic emission with ultrasonic active sensing will strengthen the damage detection process. The integration of passive acoustic emission detection with active sensing will be a technological leap forward from the current practice of periodic and subjective visual inspection, and bridge management based primarily on history of past performance. In this study, extensive laboratory investigation is performed supported by theoretical modeling analysis. A demonstration system will be presented to show how piezoelectric wafer active sensor is used for acoustic emission. Specimens representing complex structures are tested. The results will also be compared with traditional acoustic emission transducers to identify the application barriers

    Resonant capacitive MEMS acoustic emission transducers

    Get PDF
    Abstract. We describe resonant capacitive MEMS transducers developed for use as acoustic emission detectors, fabricated in the commercial three-layer polysilicon surface micromachining process (MUMPs). The 1-cm square device contains six independent transducers in the frequency range between 100 kHz and 500 kHz, and a seventh transducer at 1 MHz. Each transducer is a parallel plate capacitor with one plate free to vibrate, thereby causing a capacitance change which creates an output signal in the form of a current under DC bias voltage. With the geometric proportions we employed, each transducer responds with two distinct resonant frequencies. In our design the etch hole spacing was chosen to limit squeeze film damping and thereby produce an underdamped vibration when operated at atmospheric pressure. Characterization experiments obtained by capacitance and admittance measurements are presented, and transducer responses to physically simulated AE source are discussed. Finally, we report our use of the device to detect acoustic emissions associated with crack initiation and growth in weld metal

    MEMS Acoustic Emission Sensors

    No full text
    This paper presents a review of state-of-the-art micro-electro-mechanical-systems (MEMS) acoustic emission (AE) sensors. MEMS AE sensors are designed to detect active defects in materials with the transduction mechanisms of piezoresistivity, capacitance or piezoelectricity. The majority of MEMS AE sensors are designed as resonators to improve the signal-to-noise ratio. The fundamental design variables of MEMS AE sensors include resonant frequency, bandwidth/quality factor and sensitivity. Micromachining methods have the flexibility to tune the sensor frequency to a particular range, which is important, as the frequency of AE signal depends on defect modes, constitutive properties and structural composition. This paper summarizes the properties of MEMS AE sensors, their design specifications and applications for detecting the simulated and real AE sources and discusses the future outlook

    Convergence Analysis of a Weighted Barrier Decomposition Algorithm for Two Stage Stochastic Programming

    Get PDF
    Mehrotra and Ozevin [7] computationally found that a weighted primal barrier decomposition algorithm signiïŹcantly outperforms the barrier decomposition proposed and analyzed in [11; 6; 8]. Thispaper provides a theoretical foundation for the weighted barrier decomposition algorithm (WBDA)in [7]. Although the worst case analysis of the WBDA achieves a ïŹrst-stage iteration complexitybound that is worse than the bound shown for the decomposition algorithms of [11] and [6; 8],under a probabilistic assumption we show that the worst case iteration complexity of WBDA isindependent of the number of scenarios in the problem. The probabilistic assumption uses a novelconcept of self-concordant random variables

    Decomposition-based interior point methods for two-stage stochastic convex quadratic programs with recourse

    Get PDF
    Zhao [28] recently showed that the log barrier associated with the recourse function of two-stage stochastic linear programs behaves as a strongly self-concordant barrier and forms a self concordant family on the first stage solutions. In this paper we show that the recourse function is also strongly self-concordant and forms a self concordant family for the two-stage stochastic convex quadratic programs with recourse. This allows us to develop Benders decomposition based linearly convergent interior point algorithms. An analysis of such an algorithm is given in this paper.[28] G. Zhao: A log-barrier method with Benders decomposition for solving two-stage stochastic linear programs, Mathematical Programming Ser. A 90, (2001) 507-536

    Development of An Attitude Scale towards the Course of Music Education Teaching Methods

    No full text
    Problem Statement: Music teacher training programs comprise courses on the field, courses on teaching as a profession, and courses aimed at increasing the genearal information of the student. The course of "Music Education Teaching Methods" included in the program differs from the other courses as it includes both field instruction and teaching instruction. The fact that music is an abstract field that requires different arrangements and that the criterion of evaluation differs from other fields increases the importance of the course "Music Education Teaching Methods". In order for this course to fulfil its purpose, the students who take the course need to grasp its significance and develop a positive attitude towards the course
    • 

    corecore