719 research outputs found

    Best Practices in Endangered Species Recovery Planning: Lessons for the Conservation of Maine’s Atlantic Salmon

    Get PDF
    The call for federal listing of Atlantic salmon as endangered implies that such action will result in a recovery plan for the species that is superior to Maine ’s Atlantic Salmon Conservation Plan. In this article the authors compare the Maine plan against the findings of a recent review of Endangered Species Act recovery plans. The review, conducted by the Society for Conservation Biology in collaboration with the U.S. Fish and Wildlife Service, assessed the quality of a national sample of Endangered Species Act recovery plans with the intention of identifying “best practice.” By comparing the Maine plan to the findings of this review, the authors indicate areas where Maine’s plan is strong and suggest areas where there may be room for improvement

    MR253: A Landowner\u27s Guide to Woodcock Management in the Northeast

    Get PDF
    This report describes the spring migration and courtship, nesting, roosting, fall migration and habitat requirements of the American woodcock. It also presents specific steps that small landowners can take to enhance their property for woodcock by economically feasible methods. The report is designed for the landowner who is not a biologist, but who wants to do something for woodcock on his or her own land.https://digitalcommons.library.umaine.edu/aes_miscreports/1002/thumbnail.jp

    Brain activation time-locked to sleep spindles associated with human cognitive abilities

    Get PDF
    Copyright © 2019 Fang, Ray, Owen and Fogel. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have revealed brain activations time-locked to spindles. Yet, the functional significance of these spindle-related brain activations is not understood. EEG studies have shown that inter-individual differences in the electrophysiological characteristics of spindles (e.g., density, amplitude, duration) are highly correlated with Reasoning abilities (i.e., fluid intelligence ; problem solving skills, the ability to employ logic, identify complex patterns), but not short-term memory (STM) or verbal abilities. Spindle-dependent reactivation of brain areas recruited during new learning suggests night-to-night variations reflect offline memory processing. However, the functional significance of stable, trait-like inter-individual differences in brain activations recruited during spindle events is unknown. Using EEG-fMRI sleep recordings, we found that a subset of brain activations time-locked to spindles were specifically related to Reasoning abilities but were unrelated to STM or verbal abilities. Thus, suggesting that individuals with higher fluid intelligence have greater activation of brain regions recruited during spontaneous spindle events. This may serve as a first step to further understand the function of sleep spindles and the brain activity which supports the capacity for Reasoning

    A novel approach to dream content analysis reveals links between learning-related dream incorporation and cognitive abilities

    Get PDF
    © 2018 Fogel, Ray, Sergeeva, De Koninck and Owen. Can dreams reveal insight into our cognitive abilities and aptitudes (i.e., human intelligence )? The relationship between dream production and trait-like cognitive abilities is the foundation of several long-standing theories on the neurocognitive and cognitive-psychological basis of dreaming. However, direct experimental evidence is sparse and remains contentious. On the other hand, recent research has provided compelling evidence demonstrating a link between dream content and new learning, suggesting that dreams reflect memory processing during sleep. It remains to be investigated whether the extent of learning-related dream incorporation (i.e., the semantic similarity between waking experiences and dream content) is related to inter-individual differences in cognitive abilities. The relationship between pre-post sleep memory performance improvements and learning-related dream incorporation was investigated (N = 24) to determine if this relationship could be explained by inter-individual differences in intellectual abilities (e.g., reasoning, short term memory (STM), and verbal abilities). The extent of dream incorporation using a novel and objective method of dream content analysis, employed a computational linguistic approach to measure the semantic relatedness between verbal reports describing the experience on a spatial (e.g., maze navigation) or a motor memory task (e.g., tennis simulator) with subsequent hypnagogic reverie dream reports and waking daydream reports, obtained during a daytime nap opportunity. Consistent with previous studies, the extent to which something new was learned was related (r = 0.47) to how richly these novel experiences were incorporated into the content of dreams. This was significant for early (the first 4 dream reports) but not late dreams (the last 4 dream reports). Notably, here, we show for the first time that the extent of this incorporation for early dreams was related (r = 0.41) to inter-individual differences in reasoning abilities. On the other hand, late dream incorporation was related (r = 0.46) to inter-individual differences in verbal abilities. There was no relationship between performance improvements and intellectual abilities, and thus, inter-individual differences in cognitive abilities did not mediate the relationship between performance improvements and dream incorporation; suggesting a direct relationship between reasoning abilities and dream incorporation. This study provides the first evidence that learning-related dream production is related to inter-individual differences in cognitive abilities

    Reversed and increased functional connectivity in non-REM sleep suggests an altered rather than reduced state of consciousness relative to wake

    Get PDF
    Sleep resting state network (RSN) functional connectivity (FC) is poorly understood, particularly for rapid eye movement (REM), and in non-sleep deprived subjects. REM and non-REM (NREM) sleep involve competing drives; towards hypersynchronous cortical oscillations in NREM; and towards wake-like desynchronized oscillations in REM. This study employed simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) to explore whether sleep RSN FC reflects these opposing drives. As hypothesized, this was confirmed for the majority of functional connections modulated by sleep. Further, changes were directional: e.g., positive wake correlations trended towards negative correlations in NREM and back towards positive correlations in REM. Moreover, the majority did not merely reduce magnitude, but actually either reversed and strengthened in the opposite direction, or increased in magnitude during NREM. This finding supports the notion that NREM is best expressed as having altered, rather than reduced FC. Further, as many of these functional connections comprised “higher-order” RSNs (which have been previously linked to cognition and consciousness), such as the default mode network, this finding is suggestive of possibly concomitant alterations to cognition and consciousness

    Sleep Spindles and Intellectual Ability: Epiphenomenon or Directly Related?

    Get PDF
    Sleep spindlesshort, phasic, oscillatory bursts of activity that characterize non-rapid eye movement sleepare one of the only electrophysiological oscillations identified as a biological marker of human intelligence (e.g., cognitive abilities commonly assessed using intelligence quotient tests). However, spindles are also important for sleep maintenance and are modulated by circadian factors. Thus, the possibility remains that the relationship between spindles and intelligence quotient may be an epiphenomenon of a putative relationship between good quality sleep and cognitive ability or perhaps modulated by circadian factors such as morningness-eveningness tendencies. We sought to ascertain whether spindles are directly or indirectly related to cognitive abilities using mediation analysis. Here, we show that fast (13.5-16 Hz) parietal but not slow (11-13.5 Hz) frontal spindles in both non-rapid eye movement stage 2 sleep and slow wave sleep are directly related to reasoning abilities (i.e., cognitive abilities that support fluid intelligence, such as the capacity to identify complex patterns and relationships and the use of logic to solve novel problems) but not verbal abilities (i.e., cognitive abilities that support crystalized intelligence; accumulated knowledge and experience) or cognitive abilities that support STM (i.e., the capacity to briefly maintain information in an available state). The relationship between fast spindles and reasoning abilities is independent of the indicators of sleep maintenance and circadian chronotype, thus suggesting that spindles are indeed a biological marker of cognitive abilities and can serve as a window to further explore the physiological and biological substrates that give rise to human intelligence

    Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    Get PDF
    A spindle detection method was developed that: (1) extracts the signal of interest (i.e., spindle-related phasic changes in sigma) relative to ongoing background sigma activity using complex demodulation, (2) accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and (3) employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter individual differences, the signal was z-score transformed using a 60 s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording: one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11-16 Hz) filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles

    Does the early bird really get the worm? How chronotype relates to human intelligence

    Get PDF
    Objectives: Chronotype impacts our state at a given time of day, however, chronotype is also heritable, trait-like, and varies systematically as a function of age and sex. However, only a handful of studies support a relationship between chronotype and trait-like cognitive abilities (i.e., intelligence), and the evidence is sparse and inconsistent between studies. Typically, studies have: (1) focused on limited subjective measures of chronotype, (2) focused on young adults only, and (3) have not considered sex differences. Here, using a combination of cognitive aptitude and ability testing, subjective chronotype, and objective actigraphy, we aimed to explore the relationship between trait-like cognitive abilities and chronotype. Design: Participants (N = 61; 44 females; age = 35.30 ± 18.04 years) completed the Horne-Ostberg Morningness-Eveningness Questionnaire (MEQ) to determine subjective chronotype and wore an activity monitor for 10 days to objectively assess bedtime, rise-time, total sleep time, inter-daily stability, intra-daily variability, and relative amplitude. Cognitive ability (e.g., Verbal, Reasoning and Short-Term Memory) testing took place at the completion of the study. Results: Higher MEQ scores (i.e., more morning) were associated with higher inter-daily stability scores. Superior verbal abilities were associated with later bedtimes, younger age, but paradoxically, higher (i.e., more morning) MEQ scores. Superior STM abilities were associated with younger age only. The relationships between chronotype and trait-like cognitive abilities were similar for both men and women and did not differ between younger and older adults. Conclusions: The present study demonstrates that chronotype, measured by the MEQ, is highly related to inter-daily stability (i.e., the strength of circadian synchronization). Furthermore, although evening types have superior verbal abilities overall, higher (i.e., more morning) MEQ scores were related to superior verbal abilities after controlling for “evening type” behaviours

    Brain Activation Time-Locked to Sleep Spindles Associated With Human Cognitive Abilities

    Get PDF
    Simultaneous electroencephalography and functional magnetic resonance imaging (EEG–fMRI) studies have revealed brain activations time-locked to spindles. Yet, the functional significance of these spindle-related brain activations is not understood. EEG studies have shown that inter-individual differences in the electrophysiological characteristics of spindles (e.g., density, amplitude, duration) are highly correlated with “Reasoning” abilities (i.e., “fluid intelligence”; problem solving skills, the ability to employ logic, identify complex patterns), but not short-term memory (STM) or verbal abilities. Spindle-dependent reactivation of brain areas recruited during new learning suggests night-to-night variations reflect offline memory processing. However, the functional significance of stable, trait-like inter-individual differences in brain activations recruited during spindle events is unknown. Using EEG–fMRI sleep recordings, we found that a subset of brain activations time-locked to spindles were specifically related to Reasoning abilities but were unrelated to STM or verbal abilities. Thus, suggesting that individuals with higher fluid intelligence have greater activation of brain regions recruited during spontaneous spindle events. This may serve as a first step to further understand the function of sleep spindles and the brain activity which supports the capacity for Reasoning
    • …
    corecore