159 research outputs found

    Applications of Sxps for Studying Surface Structure, Reaction Mechanisms and Kinetics

    Get PDF
    Soft x-ray photoelectron spectroscopy (SXPS) from the S 2p core level has been used to study adsorbate induced reconstruction, identify reaction intermediates and study reaction kinetics on the Ni(111) surface. The S 2p binding energy is affected by the nature of the surface adsorption site. It has been determined from the number of S 2p states and their relative binding energies that adsorbed S induces a reconstruction of the Ni(111) surface and that the S adsorbs in fourfold sites on terraces and in troughs. S 2p SXPS has also been used to identify adsorbed species during the thermal decomposition of methanethiol on Ni(111). CH{sub 3}SH adsorbs as CH{sub 3}S{minus} at low temperatures. Above 200 K, the CH{sub 3}S{minus} changes adsorption site and the C-S bond begins to cleave. The relative concentrations of CH{sub 3}S{minus} in the two different sites and of atomic S have been monitored as a function of temperature and initial coverage. As a result of the sensitivity and resolution available in SXPS, reaction rates and kinetic parameters have been obtained for the decomposition of benzenethiol on Ni(111) by monitoring the changes in the surface composition continuously as a function of temperature and time

    First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen

    Full text link
    Using density-functional theory in combination with a thermodynamic formalism we calculate the relative stability of various structural models of the polar O-terminated (000-1)-O surface of ZnO. Model surfaces with different concentrations of oxygen vacancies and hydrogen adatoms are considered. Assuming that the surfaces are in thermodynamic equilibrium with an O2 and H2 gas phase we determine a phase diagram of the lowest-energy surface structures. For a wide range of temperatures and pressures we find that hydrogen will be adsorbed at the surface, preferentially with a coverage of 1/2 monolayer. At high temperatures and low pressures the hydrogen can be removed and a structure with 1/4 of the surface oxygen atoms missing becomes the most stable one. The clean, defect-free surface can only exist in an oxygen-rich environment with a very low hydrogen partial pressure. However, since we find that the dissociative adsorption of molecular hydrogen and water (if also the Zn-terminated surface is present) is energetically very preferable, it is very unlikely that a clean, defect-free (000-1)-O surface can be observed in experiment.Comment: 10 pages, 4 postscript figures. Uses REVTEX and epsf macro

    Influence of band width on the scattered ion yield spectra of a He + Ion by resonant or quasi-resonant charge exchange neutralization

    Get PDF
    The influence of the band structure, especially the bandwidth, on the scattered ion yield spectra of a He+ ion by the resonant or quasi-resonant neutralization was theoretically examined using quantum rate equations. When calculating the scattered ion yield spectra of He+ to simulate the experimental data, we observed that the band structure, especially the bandwidth, had a strong influence on the spectra at relatively low incident He+ ion energies of less than several hundred eV. Through many simulations, it was determined that theoretical calculations that include bandwidth calculation can simulate or reproduce the experimentally observed spectra of He+-In, He+-Ga, and He+-Sn systems. In contrast, simulations not including bandwidth simulation could neither reproduce nor account for such spectra. Furthermore, the calculated ion survival probability (ISP) at low incident ion energies tended to decrease with increasing bandwidth. This decrease in ISP probably corresponds to the relatively small scattered ion yield usually observed at low incident ion energies. Theoretically, such a decrease indicates that a He+ ion with a low incident energy can be easily neutralized on the surface when the bandwidth is large

    Direct Visualization and Control of Atomic Mobility at {100} Surfaces of Ceria in the Environmental Transmission Electron Microscope

    No full text
    Ceria is one of the world’s most prominent material for applications in heterogeneous catalysis, as catalyst support or catalyst itself. Despite an exhaustive literature on the structure of reactive facets of CeO<sub>2</sub> in line with its catalytic mechanisms, the temporal evolution of the atomic surface structure exposed to realistic redox conditions remains elusive. Here, we provide a direct visualization of the atomic mobility of cerium atoms on {100} surfaces of CeO<sub>2</sub> nanocubes at room temperature in high vacuum, O<sub>2</sub>, and CO<sub>2</sub> atmospheres in an environmental transmission electron microscope. Through quantification of the cationic mobility, we demonstrate the control of the surface dynamics under exposure to O<sub>2</sub> and CO<sub>2</sub> atmospheres, providing opportunities for a better understanding of the intimate catalytic mechanisms

    Chapter 2 - Ceria Nanoshapes-Structural and Catalytic Properties

    No full text
    This chapter describes the synthesis of ceria nanoshapes (cubes, rods, and octahedra) and detailed characterization of their structure and exposed surface facets. We show how the surface facets influence catalytic performance for the low-temperature water gas shift reaction. The use of Fourier transform infrared spectroscopy provides insights into the mechanistic steps involved in this industrially important reaction. Ceria is a versatile material used in diverse areas such as medicine, fuel cells, sensors, and water treatment, but the primary focus of this chapter is on heterogeneous catalysis by ceria
    • …
    corecore