1,340 research outputs found

    Iron and Sphingolipids as Common Players of (Mal)Adaptation to Hypoxia in Pulmonary Diseases

    Get PDF
    Hypoxia, or lack of oxygen, can occur in both physiological (high altitude) and pathological conditions (respiratory diseases). In this narrative review, we introduce high altitude pulmonary edema (HAPE), acute respiratory distress syndrome (ARDS), Chronic Obstructive Pulmonary Disease (COPD), and Cystic Fibrosis (CF) as examples of maladaptation to hypoxia, and highlight some of the potential mechanisms influencing the prognosis of the affected patients. Among the specific pathways modulated in response to hypoxia, iron metabolism has been widely explored in recent years. Recent evidence emphasizes hepcidin as highly involved in the compensatory response to hypoxia in healthy subjects. A less investigated field in the adaptation to hypoxia is the sphingolipid (SPL) metabolism, especially through Ceramide and sphingosine 1 phosphate. Both individually and in concert, iron and SPL are active players of the (mal)adaptation to physiological hypoxia, which can result in the pathological HAPE. Our aim is to identify some pathways and/or markers involved in the physiological adaptation to low atmospheric pressures (high altitudes) that could be involved in pathological adaptation to hypoxia as it occurs in pulmonary inflammatory diseases. Hepcidin, Cer, S1P, and their interplay in hypoxia are raising growing interest both as prognostic factors and therapeutical targets

    Pseudographs and Lax-Oleinik semi-group: a geometric and dynamical interpretation

    Full text link
    Let H be a Tonelli Hamiltonian defined on the cotangent bundle of a compact and connected manifold and let u be a semi-concave function defined on M. If E (u) is the set of all the super-differentials of u and (\phi t) the Hamiltonian flow of H, we prove that for t > 0 small enough, \phi-t (E (u)) is an exact Lagrangian Lipschitz graph. This provides a geometric interpretation/explanation of a regularization tool that was introduced by P.~Bernard to prove the existence of C 1,1 subsolutions

    The physics models of FLUKA: status and recent development

    Full text link
    A description of the intermediate and high energy hadronic interaction models used in the FLUKA code is given. Benchmarking against experimental data is also reported in order to validate the model performances. Finally the most recent developments and perspectives for nucleus-nucleus interactions are described together with some comparisons with experimental data.Comment: talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 10 pages, p

    Modelling the influence of shielding on physical and biological organ doses.

    Get PDF
    Distributions of "physical" and "biological" dose in different organs were calculated by coupling the FLUKA MC transport code with a geometrical human phantom inserted into a shielding box of variable shape, thickness and material. While the expression "physical dose" refers to the amount of deposited energy per unit mass (in Gy), "biological dose" was modelled with "Complex Lesions" (CL), clustered DNA strand breaks calculated in a previous work based on "event-by-event" track-structure simulations. The yields of complex lesions per cell and per unit dose were calculated for different radiation types and energies, and integrated into a version of FLUKA modified for this purpose, allowing us to estimate the effects of mixed fields. As an initial test simulation, the phantom was inserted into an aluminium parallelepiped and was isotropically irradiated with 500 MeV protons. Dose distributions were calculated for different values of the shielding thickness. The results were found to be organ-dependent. In most organs, with increasing shielding thickness the contribution of primary protons showed an initial flat region followed by a gradual decrease, whereas secondary particles showed an initial increase followed by a decrease at large thickness values. Secondary particles were found to provide a substantial contribution, especially to the biological dose. In particular, the decrease of their contribution occurred at larger depths than for primary protons. In addition, their contribution to biological dose was generally greater than that of primary protons

    To respond or not to respond to hydroxyurea in thalassemia: a matter of stress adaptation?

    Full text link

    Oxidative Stress Markers to Investigate the Effects of Hyperoxia in Anesthesia

    Get PDF
    Oxygen (O-2) is commonly used in clinical practice to prevent or treat hypoxia, but if used in excess (hyperoxia), it may act as toxic. O-2 toxicity arises from the enhanced formation of Reactive Oxygen Species (ROS) that exceed the antioxidant defenses and generate oxidative stress. In this study, we aimed at assessing whether an elevated fraction of inspired oxygen (FiO(2)) during and after general anesthesia may contribute to the unbalancing of the pro-oxidant/antioxidant equilibrium. We measured five oxidative stress biomarkers in blood samples from patients undergoing elective abdominal surgery, randomly assigned to FiO(2) = 0.40 vs. 0.80: hydroperoxides, antioxidants, nitrates and nitrites (NOx), malondialdehyde (MDA), and glutathionyl hemoglobin (HbSSG). The MDA concentration was significantly higher 24 h after surgery, and the body antioxidant defense lower, in the FiO(2) = 0.80 group with respect to both the FiO(2) = 0.40 group and the baseline values (p <= 0.05, Student's t-test). HbSSG in red blood cells was also higher in the FiO(2) = 0.80 group at the end of the surgery. NOx was higher in the FiO(2) = 0.80 group than the FiO(2) = 0.40 group at t = 2 h after surgery. MDA, the main end product of the peroxidation of polyunsaturated fatty acids directly influenced by FiO(2), may represent the best marker to assess the pro-oxidant/antioxidant equilibrium after surgery
    • …
    corecore