15 research outputs found
Structural Basis for alpha-Helix Mimicry and Inhibition of Protein-Protein Interactions with Oligourea Foldamers
Efficient optimization of a peptide lead into a drug candidate frequently needs further transformation to augment properties such as bioavailability. Among the different options, foldamers, which are sequence-based oligomers with precise folded conformation, have emerged as a promising technology. We introduce oligourea foldamers to reduce the peptide character of inhibitors of protein-protein interactions (PPI). However, the precise design of such mimics is currently limited by the lack of structural information on how these foldamers adapt to protein surfaces. We report a collection of X-ray structures of peptide-oligourea hybrids in complex with ubiquitin ligase MDM2 and vitamin D receptor and show how such hybrid oligomers can be designed to bind with high affinity to protein targets. This work should enable the generation of more effective foldamer-based disruptors of PPIs in the context of peptide lead optimization
Monitoring of the retinoic acid receptorâretinoid X receptor dimerization upon DNA binding by native mass spectrometry
International audienceIdentifying protein-DNA interactions is essential to understand the regulatory networks of cells and their influence on gene expression. In this study, we use native electrospray mass spectrometry (ESI-MS) to investigate how the heterodimerization of retinoic acid receptor-retinoid X receptor (RAR-RXR) is mediated by DNA sequence. In presence of various RAR response elements (RAREs), three oligomeric states of RAR-RXR DNA binding domains (DBDs) bound to RAREs (monomer, homo- or heterodimers) were detected and individually monitored to follow subunit assembly and disassembly upon RAREs' abundancy or sequence. In particular, a cooperative heterodimerization was shown with RARb2 DR5 (5 base pair spaced direct repeat) while a high heterogeneity reflecting random complex formation could be observed with the DR0 response elements, in agreement with native gel electrophoresis data or molecular modeling. Such MS information will help to identify the composition of species formed in solution and to define which DR sequence is specific for RAR-RXR heterodimerization
4-Hydroxy-1α,25-Dihydroxyvitamin D<sub>3</sub>: Synthesis and StructureâFunction Study
The active vitamin D metabolites, 25-hydroxyvitamin D3 (25D3) and 1,25-dihydroxyvitamin D3 (1,25D3), are produced by successive hydroxylation steps and play key roles in several cellular processes. However, alternative metabolic pathways exist, and among them, the 4-hydroxylation of 25D3 is a major one. This study aims to investigate the structureâactivity relationships of 4-hydroxy derivatives of 1,25D3. Structural analysis indicates that 1,4α,25(OH)3D3 and 1,4ÎČ,25(OH)3D3 maintain the anchoring hydrogen bonds of 1,25D3 and form additional interactions, stabilizing the active conformation of VDR. In addition, 1,4α,25D3 and 1,4ÎČ,25D3 are as potent as 1,25D3 in regulating the expression of VDR target genes in rat intestinal epithelial cells and in the mouse kidney. Moreover, these two 4-hydroxy derivatives promote hypercalcemia in mice at a dose similar to that of the parent compound
Advances in vitamin D receptor function and evolution based on the 3D structure of the lamprey ligand binding domain
International audience1α,25-dihydroxyvitamin D 3 (1,25D 3) regulates many physiological processes in vertebrates by binding to the Vitamin D Receptor (VDR). Phylogenetic analysis indicates that jawless fishes are the most basal vertebrates exhibiting a VDR gene. To elucidate the mechanism driving VDR activation during evolution, we determined the crystal structure of the VDR ligand binding domain complex from the basal vertebrate Petromyzon marinus, sea lamprey (lVDR). Comparison of 3D crystal structure of lVDR-1,25D 3 complex with higher vertebrates VDR-1,25D 3 structures suggest that 1,25D 3 binds to lVDR similarly to human VDR (hVDR), but with unique features for lVDR around linker regions between H11 and H12 and between H9 and H10. These structural differences may contribute to the marked species differences in transcriptional responses. Further, residue co-evolution analysis among vertebrates VDR identifies amino-acid positions in H9 and the large insertion domain (iD) VDR LBD specific
Modulation of RXR-DNA complex assembly by DNA context
International audienc
Structural basis for DNA recognition and allosteric control of the retinoic acid receptors RARâRXR
International audienceRetinoic acid receptors (RARs) as a functional heterodimer with retinoid X receptors (RXRs), bind a diverse series of RA-response elements (RAREs) in regulated genes. Among them, the non-canonical DR0 elements are bound by RXR-RAR with comparable affinities to DR5 elements but DR0 elements do not act transcriptionally as independent RAREs. In this work, we present structural insights for the recognition of DR5 and DR0 elements by RXR-RAR heterodimer using x-ray crystallography, small angle x-ray scattering, and hydrogen/deuterium exchange coupled to mass spectrometry. We solved the crystal structures of RXR-RAR DNA-binding domain in complex with the Rarb2 DR5 and RXR-RXR DNAbinding domain in complex with Hoxb13 DR0. While cooperative binding was observed on DR5, the two molecules bound non-cooperatively on DR0 on opposite sides of the DNA. In addition, our data unveil the structural organization and dynamics of the multi-domain RXR-RAR DNA complexes providing evidence for DNA-dependent allosteric communication between domains. Differential binding modes between DR0 and DR5 were observed leading to differences in conformation and structural dynamics of the multi-domain RXR-RAR DNA complexes. These results reveal that the topological organization of the RAR binding element confer regulatory information by modulating the overall topology and structural dynamics of the RXR-RAR heterodimers
HR-Bac, a toolbox based on homologous recombination for expression, screening and production of multiprotein complexes using the baculovirus expression system
International audienceAbstract The Baculovirus/insect cell expression system is a powerful technology for reconstitution of eukaryotic macromolecular assemblies. Most multigene expression platforms rely on Tn7-mediated transposition for transferring the expression cassette into the baculoviral genome. This allows a rigorous characterization of recombinant bacmids but involves multiple steps, a limitation when many constructs are to be tested. For parallel expression screening and potential high throughput applications, we have established an open source multigene-expression toolbox exploiting homologous recombination, thus reducing the recombinant baculovirus generation to a single-step procedure and shortening the time from cloning to protein production to 2Â weeks. The HR-bac toolbox is composed of a set of engineered bacmids expressing a fluorescent marker to monitor virus propagation and a library of transfer vectors. They contain single or dual expression cassettes bearing different affinity tags and their design facilitates the mix and match utilization of expression units from Multibac constructs. The overall cost of virus generation with HR-bac toolbox is relatively low as the preparation of linearized baculoviral DNA only requires standard reagents. Various multiprotein assemblies (nuclear hormone receptor heterodimers, the P-TEFb or the ternary CAK kinase complex associated with the XPD TFIIH subunit) are used as model systems to validate the toolbox presented
Conformational editing of intrinsically disordered protein by α-methylation
Intrinsically disordered proteins (IDPs) constitute a large portion of âDark Proteomeâ â difficult to characterize or yet to be discovered protein structures. Here we used conformationally constrained α-methylated amino acids to bias the conformational ensemble in the free unstructured activation domain of transcriptional coactivator ACTR. Different sites and patterns of substitutions were enabled by chemical protein synthesis and led to distinct populations of α-helices. A specific substitution pattern resulted in a substantially higher binding affinity to nuclear coactivator binding domain (NCBD) of CREB-binding protein, a natural binding partner of ACTR. The first X-ray structure of the modified ACTR domain - NCBD complex visualized a unique conformation of ACTR and confirmed that the key α-methylated amino acids are localized within α-helices in the bound state. This study demonstrates a strategy for characterization of individual conformational states of IDP
Enhancing Binding Affinity of an Intrinsically Disordered Protein by α-Methylation of Key Amino Acid Residues
Intrinsically disordered proteins (IDPs), which undergo folding upon binding to their targets, are critical players in protein interaction networks. Here we demonstrate that incorporation of non-canonical alpha-methylated amino acids into the unstructured activation domain of the transcriptional coactivator ACTR can stabilize helical conformations and strengthen binding interactions with the nuclear coactivator binding domain (NCBD) of CREB-binding protein (CBP). A combinatorial alpha-methylation scan of the ACTR sequence converged on two substitutions at positions 1055 and 1076 that increase affinity for both NCBD and the full length 270 kDa CBP by one order of magnitude. The first X-ray structure of the modified ACTR domain bound to NCBD revealed that the key alpha-methylated amino acids were localized within alpha-helices. Biophysical studies showed that the observed changes in binding energy are the result of long-range interactions and redistribution of enthalpy and entropy. This proof-of-concept study establishes a potential strategy for selective inhibition of protein-protein interactions involving IDPs in cells.<br /