36 research outputs found

    Management of Difficult Cases of Autoimmune Hepatitis

    Get PDF
    Autoimmune hepatitis (AIH) is a complex autoimmune disease characterized by immune-mediated destruction of hepatic parenchyma which can result in cirrhosis, liver failure, and death. Current American Association for the Study of Liver Diseases (AASLD) and European Association for the Study of Liver (EASL) guidelines recommend corticosteroids alone or in combination with azathioprine as first-line treatment strategies. However, a significant proportion of patients may not be able to tolerate or achieve complete biochemical response with these options. In this article, we discuss approaches to these patients and other challenging AIH patient groups such as the asymptomatic, pregnant, elderly, and liver transplant recipients

    Three-dimensional analysis of perineural invasion in extrahepatic cholangiocarcinoma using tissue clearing

    Get PDF
    Perineural invasion (PNI) is a characteristic invasion pattern of distal cholangiocarcinoma (DCC). Conventional histopathologic examination is a challenging approach to analyze the spatial relationship between cancer and neural tissue in full-thickness bile duct specimens. Therefore, we used a tissue clearing method to examine PNI in DCC with three-dimensional (3D) structural analysis. The immunolabeling-enabled 3D imaging of solvent-cleared organs method was performed to examine 20 DCC specimens from five patients and 8 non-neoplastic bile duct specimens from two controls. The bile duct epithelium and neural tissue were labeled with CK19 and S100 antibodies, respectively. Two-dimensional hematoxylin/eosin staining revealed only PNI around thick nerve fibers in the deep layer of the bile duct, whereas PNI was not identified in the superficial layer. 3D analysis revealed that the parts of DCC closer to the mucosa exhibited more nerves than the normal bile duct. The nerve fibers were continuously branched and connected with thick nerve fibers in the deep layer of the bile duct. DCC formed a tubular structure invading from the epithelium and extending around thin nerve fibers in the superficial layer. DCC exhibited continuous infiltration around the thick nerve fibers in the deep layer. This is the first study using a tissue clearing method to examine the PNI of DCC, providing new insights into the underlying mechanisms

    PET-based Treatment Response Assessment for Neoadjuvant Chemoradiation in Pancreatic Adenocarcinoma: An Exploratory Study

    No full text
    PURPOSE: Performance of anatomical metrics of Response Evaluation Criteria in Solid Tumors (RECIST1.1) versus Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST1.0) for neoadjuvant chemoradiation (nCR) of pancreatic adenocarcinoma was evaluated based on the pathological treatment response (PTR) data. METHODS AND MATERIALS: The pre- and post-nCR CT and PET data for 14 patients with resectable or borderline resectable pancreatic head adenocarcinoma treated with nCR followed by surgery were retrospectively analyzed. These data were compared with the PTR which were graded according to tumor cell destruction (cellularity), with Grade 0, 1, 2 or 3 (G0, G1, G2 or G3) for complete, moderate, minimal and poor responses, respectively. Maximum standardized uptake value (SUVmax) was defined using body-weight (SUVbw). PERCIST1.0 was defined using lean-body mass normalized SUV (SUVlb or SUL). RECIST1.1 was defined by contouring the whole pancreas head on the CT image. Pre- and post-SUL-peak and SUVmax, RECIST1.1 and PETRECIST1.0 were correlated with PTR using Pearson’s correlation coefficient test. RESULTS: The average mean and SD in SUL-peak for all patients analyzed were lower in post-nCR (3.63±1.06) compared to those at pre-nCR (4.29±0.89). Using PERCIST1.0, 62% of patients showed stable metabolic disease (SMD), 23% partial metabolic response (PMR), and 15% progressive metabolic disease (PMD). Using RECIST1.1, 85% of patients showed stable disease (SD), 8% partial response (PR), and 7% progressive diseases (PD). A poor insignificant correlation was established between PRT and PERECIST1.0 (r=0.121), whereas no correlation was seen with RECIST1.1. CONCLUSIONS: PERCIST1.0 appears to increase the chance of detecting patients with progressive disease compared to the conventional anatomical-based assessment of RECIST1.1. The integration of these additional radiographic metrics in assessing treatment response to nCR for pancreatic adenocarcinoma may provide a promising strategy to better select patients that are most suitable for therapeutic intensification

    Could Aspirin and Diets High in Fiber Act Synergistically to Reduce the Risk of Colon Cancer in Humans?

    No full text
    Early inhibition of inflammation suppresses the carcinogenic process. Aspirin is the most commonly used non-steroid anti-inflammatory drugs (NSAIDs), and it irreversibly inhibits cyclooxygenase-1 and -2 (COX1, COX2). Multiple randomized clinical trials have demonstrated that aspirin offers substantial protection from colon cancer mortality. The lower aspirin doses causing only minimal gastrointestinal disturbance, ideal for long-term use, can achieve only partial and transitory inhibition of COX2. Aspirin’s principal metabolite, salicylic acid, is also found in fruits and vegetables that inhibit COX2. Other phytochemicals such as curcumin, resveratrol, and anthocyanins also inhibit COX2. Such dietary components are good candidates for combination with aspirin because they have little or no toxicity. However, obstacles to using phytochemicals for chemoprevention, including bioavailability and translational potential, must be resolved. The bell/U-shaped dose–response curves seen with vitamin D and resveratrol might apply to other phytochemicals, shedding doubt on ‘more is better’. Solutions include: (1) using special delivery systems (e.g., nanoparticles) to retain phytochemicals; (2) developing robust pharmacodynamic biomarkers to determine efficacy in humans; and (3) selecting pharmacokinetic doses relevant to humans when performing preclinical experiments. The combination of aspirin and phytochemicals is an attractive low-cost and low-toxicity approach to colon cancer prevention that warrants testing, particularly in high-risk individuals

    Correlation of ADC With Pathological Treatment Response for Radiation Therapy of Pancreatic Cancer

    No full text
    PURPOSE: To investigate the feasibility of using apparent diffusion coefficient (ADC) to assesspathological treatment response in pancreatic ductal adenocarcinoma (PDAC) following neoadjuvant chemoradiation (nCR). MATERIALS/METHODS: MRI and pathological data collected for 25patients with resectable and borderline resectable PDAC following nCR were retrospectively analyzed. Pre- and post-nCR mean ADC values in the tumors were compared using Wilcoxon matched pairs test. Correlation of pathological treatment response and ADC values was assessed using Pearson’s correlation coefficient test and receiver-operating-curve (ROC) analysis. RESULTS: The average mean and standard deviation (SD) of the ADC values for all the patients analyzed were significantly higher in post-nCR (1.667±0.161×10-3) compared with those prior to nCR (1.395±0.136×10-3 mm2/sec), (P<0.05). The mean ADC values after nCR were significantly correlated with the pathological responses (r=-0.5172); P=0.02. The area under the curve (AUC) of the ADC values for differentiating G1, G2 and G3 pathological responses, using ROC analysis, was found to be 0.6310 and P=0.03. CONCLUSION: Changes of pre- and post-treatment ADC values significantly correlated with pathological treatment response for PDAC patients treated with chemoradiation therapy, indicating that the ADC could be used to assesstreatment response for PDAC

    Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability.

    No full text
    The mitochondrial HSP70 chaperone mortalin (HSPA9/GRP75) is often upregulated and mislocalized in MEK/ERK-deregulated tumors. Here, we show that mortalin depletion can selectively induce death of immortalized normal fibroblasts IMR90E1A when combined with K-RasG12V expression, but not with wild-type K-Ras expression, and that K-RasG12V-driven MEK/ERK activity is necessary for this lethality. This cell death was attenuated by knockdown or inhibition of adenine nucleotide translocase (ANT), cyclophilin D (CypD), or mitochondrial Ca2+ uniporter (MCU), which implicates a mitochondria-originated death mechanism. Indeed, mortalin depletion increased mitochondrial membrane permeability and induced cell death in KRAS-mutated human pancreatic ductal adenocarcinoma (PDAC) and colon cancer lines, which were attenuated by knockdown or inhibition of ANT, CypD, or MCU, and occurred independently of TP53 and p21CIP1. Intriguingly, JG-98, an advanced MKT-077 derivative, phenocopied the lethal effects of mortalin depletion in K-RasG12V-expressing IMR90E1A and KRAS-mutated tumor cell lines in vitro. Moreover, JG-231, a JG-98 analog with improved microsomal stability effectively suppressed the xenograft of MIA PaCa-2, a K-RasG12C-expressing human PDAC line, in athymic nude mice. These data demonstrate that oncogenic KRAS activity sensitizes cells to the effects of mortalin depletion, suggesting that mortalin has potential as a selective therapeutic target for KRAS-mutated tumors
    corecore