51 research outputs found

    Development of 1,3a,6a-triazapentalene-labeled enterobactin as a fluorescence quenching sensor of iron ion

    Get PDF
    1,3a,6a-Triazapentalene (TAP)-labeled enterobactin was developed as an iron ion sensor. 3-Acetylated-TAP was successfully introduced to the catechol ring of enterobactin, a well-recognized siderophore secreted by various Gram-negative bacteria. The fluorescence of TAPlabeled enterobactin decreased gradually as the amount of Fe3+ ion as an additive was increased, and 1.2 equiv of Fe3+ ion completely quenched the fluorescence. In clear contrast, when other metal ions were used, the fluorescence of TAP-labeled enterobactin remained even at 5.0 equiv

    Synthesis of yellow and red fluorescent 1,3a,6a-triazapentalenes and the theoretical investigation of their optical properties

    Get PDF
    To expand the originally developed fluorescent 1,3a,6a-triazapentalenes as fluorescent labelling reagents, the fluorescence wavelength of the 1,3a,6a-triazapentalenes was extended to the red color region. Based on the noteworthy correlation of the fluorescence wavelength with the inductive effect of the 2-substituent, electron-deficient 2-(2-cyano-4-methoxycarbonylphenyl)-1,3a,6a-triazapentalene and 2-(2,6-dicyano-4-methoxycarbonylphenyl)-1,3a,6a-triazapentalene were synthesized. The former exhibited yellow fluorescence and the latter exhibited red fluorescence, and both compounds exhibited large Stokes shifts, and the 1,3a,6a-triazapentalene system enabled the same fluorescent chromophore to cover the entire region of visible wavelengths. The potential applications of the 1,3a,6a-triazapentalenes as fluorescent probes in the fields of the life sciences were investigated, and the 1,3a,6a-triazapentalene system was clearly proven to be useful as a fluorescent reagent for live cell imaging. Quantum chemical calculations were performed to investigate the optical properties of the 1,3a,6a-triazapentalenes. These calculations revealed that the excitation involves a significant charge-transfer from the 1,3a,6a-triazapentalene skeleton to the 2-substituent. The calculated absorption and fluorescence wavelengths showed a good correlation with the experimental ones, and thus the system could enable the theoretical design of substituents with the desired optical properties

    Cellular Morphology Visualization to Probe Cell Differentiation

    Get PDF
    Nuclear and cytoplasmic morphological changes provide important information about cell differentiation processes, cell functions, and signal responses. There is a strong desire to develop a rapid and simple method for visualizing cytoplasmic and nuclear morphology. Here, we developed a novel and rapid method for probing cellular morphological changes of live cell differentiation process by a fluorescent probe, TAP-4PH, a 1,3a,6a-triazapentalene derivative. TAP-4PH showed high fluorescence in cytoplasmic area, and visualized cytoplasmic and nuclear morphological changes of live cells during differentiation. We demonstrated that TAP-4PH visualized dendritic axon and spine formation in neuronal differentiation, and nuclear structural changes during neutrophilic differentiation. We also showed that the utility of TAP-4PH for visualization of cytoplasmic and nuclear morphologies of various type of live cells. Our visualizing method has no toxicity and no influence on the cellular differentiation and function. The cell morphology can be rapidly observed after addition of TAP-4PH and can continue to be observed in the presence of TAP-4PH in cell culture medium. Moreover, TAP-4PH can be easily removed after observation by washing for subsequent biological assay. Taken together, these results demonstrate that our visualization method is a powerful tool to probe differentiation processes before subsequent biological assay in live cells

    DNA Damage Sensor γ

    Get PDF
    Background. Phosphorylated histone H2AX (γ-H2AX) is a potential regulator of DNA repair and is a useful tool for detecting DNA damage. To evaluate the clinical usefulness of γ-H2AX in hepatocellular carcinoma (HCC), we measured the level of γ-H2AX in HCC, dysplastic nodule, and nontumorous liver diseases. Methods. The level of γ-H2AX was measured by immunohistochemistry in fifty-eight HCC, 18 chronic hepatitis, 22 liver cirrhosis, and 19 dysplastic nodules. Appropriate cases were also examined by fluorescence analysis and western blotting. Results. All cases with chronic liver disease showed increased levels of γ-H2AX expression. In 40 (69.9%) of 58 cases with HCC, the labeling index (LI) of γ-H2AX was above 50% and was inversely correlated with the histological grade. Mean γ-H2AX LI was the highest in dysplastic nodule (74.1±22.1%), which was significantly higher than HCC (P<0.005). Moreover, γ-H2AX was significantly increased in nontumorous tissues of HCC as compared with liver cirrhosis without HCC (62.5±24.7%, from 5.1 to 96.0%, P<0.005). Conclusions. γ-H2AX was increased in the preneoplastic lesions of HCC and might be a useful biomarker for predicting the risk of HCC

    Functional 1,3a,6a-triazapentalene scaffold : Design of fluorescent probes for kinesin spindle protein (KSP)

    Get PDF
    1,3a,6a-Triazapentalene is a compact fluorescent chromophore. In this study, triazapentalene was used to modify a series of biphenyl-type inhibitors of kinesin spindle protein (KSP) to develop fluorescent probes for the intracellular visualization of this protein. Microscopic studies demonstrated that these novel triazapentalene-labeled compounds exhibited inhibitory activity towards KSP in cultured cells and provided important information concerning the intracellular distribution

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Transformations of 1-(Oxiranylmethyl)-1,2,3-triazoles into 2-(Oxiranylmethyl)-1,2,3-triazoles and Alkanenitriles

    Get PDF
    New reactions for the transformation of 1-(oxiranylmethyl)-1,2,3-triazoles into 2-(oxiranylmethyl)-1,2,3-triazoles or alkanenitriles were established. Successive treatment of the substrate with triflic acid and t-BuOH afforded 4,6-dihydro-5-hydroxy-1,3a,6a-triazapentalene derivative. Under the influence of NaH, the bicyclic compound was converted to a 2-(oxiranylmethyl)-1,2,3-triazole or an alkanenitrile. The reaction pathway depends on the substituent pattern of the epoxide side chain
    corecore