196 research outputs found
Two- and three-alpha systems with nonlocal potential
Two body data alone cannot determine the potential uniquely, one needs
three-body data as well. A method is presented here which simultaneously fits
local or nonlocal potentials to two-body and three-body observables. The
interaction of composite particles, due to the Pauli effect and the
indistinguishability of the constituent particles, is genuinely nonlocal. As an
example, we use a Pauli-correct nonlocal fish-bone type optical model for the
potential and derive the fitting parameters such that it
reproduces the two- and three- experimental data.Comment: 16 pages, 5 figures, Inverse Scattering Conference, Aug 2007, Siofok,
Hungary New reference adde
Collective Quantisation of a Gravitating Skyrmion
Collective quantisation of a B=1 gravitating skyrmion is described. The
rotational and isorotational modes are quantised in the same manner as the
skyrmion without gravity. It is shown in this paper how the static properties
of nucleons such as masses, charge densities, magnetic moments are modified by
the gravitational interaction.Comment: 10 pages, 9 figures, minor corrections, published versio
Realistic ghost state: Pauli forbidden state from rigorous solution of the α particle
The antisymmetrization of the composite particles in cluster model calculations manifests itself in Pauli forbidden states (ghost states), if one restricts oneself to an undeformed cluster in the low-energy region. The resonating group method and the generating coordinate method rely on a property of the norm kernel, which introduces some of the ghost states. The norm kernel has been usually been calculated under the assumption that the inner wave functions have a simple Gaussian form. This is the first time that this assumption has been tested in a rigorous way. In the 4He+N system, we demonstrate a ghost state, which is calculated from a rigorous solution of Yakubovsky equations for the α particle. The ghost states calculated by rigorous and approximate methods turn out to have a very similar form. It is analytically proved that the trace of the norm kernel does not depend on the inner wave function we choose
Cluster structures in Oxygen isotopes
Cluster structure of 16O,18O and 20O is investigated by the antisymmettrized
molecular dynamics (AMD) plus generator coordinate method (GCM). We have found
the K^{\pi}=0 and 0 rotational bands of 18O that have the prominent
14C+\alpha cluster structure. Clustering systematics becomes richer in 20O. We
suggest the K^{\pi}=0 band that is the mixture of the 12C+\alpha+4n and
14C+6He cluster structures, and the K^{\pi}=0 band that has the 14C+6He
cluster structure. The K^{\pi}=0 and 0 bands that have the
prominent 16C+\alpha cluster structure are also found.Comment: 9pages, 9figure
- …
