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The antisymmetrization of the composite particles in cluster model calculations manifests itself in Pauli
forbidden states~ghost states!, if one restricts oneself to an undeformed cluster in the low-energy region. The
resonating group method and the generating coordinate method rely on a property of the norm kernel, which
introduces some of the ghost states. The norm kernel has been usually been calculated under the assumption
that the inner wave functions have a simple Gaussian form. This is the first time that this assumption has been
tested in a rigorous way. In the4He1N system, we demonstrate a ghost state, which is calculated from a
rigorous solution of Yakubovsky equations for thea particle. The ghost states calculated by rigorous and
approximate methods turn out to have a very similar form. It is analytically proved that the trace of the norm
kernel does not depend on the inner wave function we choose.

PACS number~s!: 21.45.1v, 21.60.Gx, 21.30.2x, 27.10.1h
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Since 1937 @1#, when the resonating group metho
~RGM! was established, it has been successfully applie
many light nuclei systems. The method is essentially ba
on the variational principle under the conditions that t
clusters remain in the ground state in the low-energy reg
and the total wave function is totally antisymmetrized b
cause of the Pauli exclusion principle. A typical example
the twoa model @2,3# of 8Be. In the 1970’s the RGM had
great successes@4# and the method was extended to the ge
erating coordinate method~GCM! @5#, the orthogonality con-
dition model ~OCM! @6#, the fish-bone optical mode
~FBOM! @7#, etc. The Pauli exclusion principle plays an im
portant role in the relative motion part of the wave functi
because it rules out part of the model space by an ortho
nality condition. The Pauli forbidden states~ghost states! are
generated by diagonalization of an integral kernel in
RGM. The integral kernel is known as the norm kernel~NK!
N which is defined, for example, in the two cluster model

N~rW,rW8![^f1f2d~rW !u~12A!uf1f2d~rW8!&, ~1!

wheref1 , f2, andA are two inner cluster wave function
of the system and an antisymmetrizer for all nucleons,
spectively.r is the relative motion coordinate. Namely, th
ghost statesun(rW) are eigenstates ofN with the eigenvalue
gn51:

E drW8N~rW,rW8!un~rW8!5gnun~rW !. ~2!

The total wave functionC of the system

uC&[Auf1f2x& ~3!

is orthogonal to the ghost statesuf1f2un&

*Present address: Institut fu¨r Strahlen- und Kernphysik der Uni
versität Bonn Nussallee 14-16, D-53115 Bonn, Germany.
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^Cuf1f2un&5^f1f2xuAuf1f2un&

5^f1f2xu~121!uf1f2un&50, ~4!

wherex is the relative wave function between the two clu
ters.

Beyond 8Be the a cluster model has been studied
12C @8–10#,16O @11#, etc. The correct treatment of the Pau
forbidden states is essential even in the case of bound s
of clusters, where the neglect of the Pauli principle lea
to an extreme overbinding. However, even with the con
tion they are overbound, which is still a pending proble
@12–14# in the a cluster model.

It is analytically proved@15# that if the inner wave func-
tions are simple products of Gaussian functions, then
eigenvectorsun of Eq. ~2! become familiar harmonic oscil
lator functions. For the sake of simplicity the four spinle
cluster (a particle! system in16O has been studied@11# us-
ing the Yakubovsky equations@16#. Nowadays, it is possible
to obtain rigorous solutions of thea particle wave function
using realistic potentials@17#. The recent progress of the 4N
scattering state is reviewed in Ref.@18#. Therefore, it be-
comes possible to compare the ghost states which one
tains from the rigorous Yakubovsky solution of thea par-
ticle.

In this paper we would like to choose the most simp
case, thea1N system. The first four nucleons build up th
ground state of thea particle, while the fifth particle is the
spectator. The nucleons are identical particles, furtherm
the wave functionfa of a particle is normalized to
^faufa&51 and NK is defined as Eq.~1!,

N54^fafnduP45ufafnd&. ~5!

P45 is the particle exchange operator~4 and 5!. Figure 1
suggests the picture of three cluster system (3N1N1N).
The calculation of the NK is done with Jacobi coordinat
which we show in Fig. 2. The relative Jacobi momenta
prepared and the relations between the Jacobi coordinate
©2000 The American Physical Society04-1
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pW 15qW 21
1

4
qW 1 , pW 25qW 11

1

4
qW 2 , ~6!

where pi and qi ( i 51,2) are Jacobi momenta of 3N1N
relative motion and 4N1N one, respectively.

Our way of calculating the NK is very similar to the ca
culation of a leading~Born! term of the Alt-Grassberger
Sandhas equations@19,20#. For example, in the text@21# they
treat the Born termZ by the partial wave representation wi
a functionFL. In our calculation it is simply replaced as

FN1N2

L ~q1 ,q2!5
4

2E21

1

d cosuF E
0

`

dxE
0

`

dy

3fa:N1
~x,y,upW 1u!fa:N2

~x,y,upW 2u!GPL~cosu!, ~7!

where the angleu is between the vectorsqW 1 and qW 2 , N1
and N2 the state channels of the partial wave, andPL the
Legendre function.x and y are rests of Jacobi momen
which describe the motion of particles~1, 2, and 3! inside of
the a particle. The numerator 4 is derived from Eq.~5!.

As an example, thea wave function@17# of the Argonne
potential ~AV14! @22# is applied, and we take the case
total spinJ51/21. For the sake of simplicity we assume th
spin j of 3N is almost 1/21 ~in fact, 94.9% for the case o
AV14 potential!, therefore, the angular momentum betwe
clustersa and neutron isS wave. This leads toL50.

Under this choice of the partial waves the recoupling
efficient AN1 ,N2

L @21# is 1/4 and one gets

N0~q1 ,q2!5
1

2E21

1

d cosuF E dxE dy

3fa:[1/21]~x,y,p1!fa:[1/21]~x,y,p2!G
[

1

2E21

1

d cosuÑ~p1 ,p2!, ~8!

FIG. 1. The diagram of the norm kernel.

FIG. 2. Jacobi momenta.
03400
-

where the subscript ‘‘0’’ of the norm kernel means the a
gular momentum ofqW and the kernelÑ will be used later.

The ghost state is shown in Fig. 3. For our calculati
the eigenvalueg0 of Eq. ~2! is not exactly equal to one, bu
0.937 ~if it is renormalized by the abovementione
94.9%,g050.987). The solid line is the ghost stateu0

Y cal-
culated from our Yakubovsky solutionfa , comparing to the
dashed line from usual Gaussian function

u0
G~r !5S 128 vaN

3

p D 1/4

exp~2vaNr 2! ~9!

with vaN5V3(431)/(411) whereV is a common shell
model mode (0.275 fm22) @3#. They are normalized by
*0

`un
2(r )r 2dr51. In the short range our ghost stateu0

Y is
smaller thanu0

G . The repulsive core of realistic potentia
reflects in this range. This behavior is similar to that of co
relation functions@23#. Beyond 4 fm ouru0

Y is bigger than
u0

G because in general the Gaussian function is more quic
decreasing than exponential one. We also show them in
momentum space~see Fig. 4!. Here the repulsive core man
fests itself by a node at'2 fm 21 which is absent inu0

G .
Overall they agree well.

To find the most realistic width parameterV we optimize
R5u^u0

Yuu0
G$V%&u23100 @%# in Fig. 5. We could recom-

mend V50.24 @ fm22# of the Gaussian width paramete
which is similar toV50.275@ fm22# @3#.

FIG. 3. The ghost state in coordinate space. The solid~dashed!
line is u0

Y(r ) @u0
G(r )#.

FIG. 4. The ghost state (n50) in momentum space. The soli
~dashed! line is u0

Y(q) @u0
G(q)#. The disconnection of the solid line

causes from change of sign.
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REALISTIC GHOST STATE: PAULI FORBIDDEN . . . PHYSICAL REVIEW C62 034004
In Table I we summerize the biggest eigenvalues
Eq. ~2!. Analytically we find in the Gaussian case eigenv
uesgn5(24)2(2n10), n50,1,2, . . . @15#. The realistic NK
has a similar spectrum. We compare the statesu1

Y andu1
G for

n51 in Fig. 6. It is remarkable that in this case the realis
ghost state has more structure though the eigenvalues
very similar.

The matrix traces Tr@N0# are given

Tr@N0#G5 (
n50

`

gn5 (
n50

` S 1

16D
n

5
16

15
51.0666 . . . ,

Tr@N0#Y5E
0

`

N0~q,q!q2dq51.0125. ~10!

If the wave function ofa particle is renormalized by only
j 51/21, *0

`p2dpÑ(p,p)51 ~0.949: original norm! we get
Tr@N0#Y51.0666 which must exactly be the number of t
Gaussian form. Because it is analytically proved that
trace Tr@N0# does not depend what kinds of thea wave
function we choose

Tr@N0#5E
0

`F1

2E21

1

d cosu

3ÑSA17

16
1

cosu

2
q,A17

16
1

cosu

2
qD Gq2dq

5
1

2E21

1

d cosu
1

A17/161cosu/23
5

16

15
. ~11!

TABLE I. Eigenvalues of the norm kernel.

n gn (gn
21) of un

Y gn (gn
21) of un

G @15#

0 0.937 ~1.068! 1.00000 ~1!

1 0.0663 ~15.09! 0.06666 ~16!

2 0.00753 ~132.0! 0.00391 ~256!

FIG. 5. The percentageR of the ghost state as a function o
oscillator parameterV.
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We illustrate both NKs~Fig. 7 forN 0
Y and Fig. 8 forN 0

Y).
The Gaussian case is analytically given,

N0~q,q8!5
32

qq8
A 1

6pV

3expF 17

48V
~q21q82!GsinhF 1

3V
qq8G . ~12!

The shape is so similar that the difference (N 0
Y2N 0

G) is also
shown in Fig. 9.

Although there is only a single ghost state in aa-N sys-
tem, in general, the cluster-cluster effective interaction
light nuclei has a lot of ghost states. In this simple case
could find some remarkable differences in the eigens
(n51) and the eigenvalue forn52 which might effect
RGM calculations of systems withA.5. For a most prob-
able case such a Pauli blocking will be applied to thea-n-n
three-body model system. There are already some app
tions @24,25# by using some Pauli methods.

FIG. 6. The eigenstate (n51) of Eq. ~2! in coordinate space
The solid~dashed! line is u1

Y(r )@u1
G(r )#.

FIG. 7. Norm kernelN 0
Y .
4-3
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It will be important for benchmark calculations for sy
tems with more nucleons to look into the ghost states us
rigorous solutions@26# from few-body physics. Note tha
here we discuss the Pauli forbidden state which is differ
from the spurious state of the Faddeev calculations@27,28#.
The term ‘‘spurious state’’ has been used a lot in ma
places, even if a cluster model has no inner structure
ghost states appear in the model and they are interprete
kinds of spurious states. We should not confuse spuri

FIG. 8. Norm kernelN 0
G .
. C
.

.

S
,’’
p

da
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states caused from Faddeev decomposition@27–29#. In this
paper we simply take the physical Yakubovsky solution ofa
particle to test quantitatively how precise the former Gau
ian norm kernel is.

We are grateful for discussions with Professor W
Glöckle, and thank Professor H. Witata and Dr. J. Golak
fruitful discussions during our stay in Cracow. This wo
was supported by the Deutsche Forschungsgemeinsc
~H.K. and A.N.! and the numerical calculations have be
performed on the CRAY T3E of the John von Neuma
Institute for Computing in Ju¨lich, Germany.

FIG. 9. The difference of the norm kernels (N 0
Y2N 0

G).
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944 ~2000!; W. Glöckle and H. Kamada, Phys. Rev. Lett.71,
971 ~1993!; H. Kamada and W. Glo¨ckle, Nucl. Phys.A548,
205 ~1992!.

@18# A. C. Fonseca, Phys. Rev. Lett.83, 4021~1999!.
@19# E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys.B2,

167 ~1967!.
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