-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Kyutacar : Kyushu Institute of Technology Academic Repository

°e NMNIEXRFFHEEURI LY

+ Kyutacar

ite of Technology Academic Repository

Realistic ghost state: Pauli forbidden state
from rigorous solution of the a particle

00 Kamada Hiroyuki, Oryu S, Nogga A
journal or Physical Review C

publication title

volume 62

number 3

page range 034004-1-034004-5

year 2000-09

URL http://hdl._handle.net/10228/684

doi: 10.1103/PhysRevC.62.034004


https://core.ac.uk/display/147422277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PHYSICAL REVIEW C, VOLUME 62, 034004

Realistic ghost state: Pauli forbidden state from rigorous solution of thea particle
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(Received 5 January 2000; published 16 August 2000

The antisymmetrization of the composite particles in cluster model calculations manifests itself in Pauli
forbidden stategghost states if one restricts oneself to an undeformed cluster in the low-energy region. The
resonating group method and the generating coordinate method rely on a property of the norm kernel, which
introduces some of the ghost states. The norm kernel has been usually been calculated under the assumption
that the inner wave functions have a simple Gaussian form. This is the first time that this assumption has been
tested in a rigorous way. In theHe+ N system, we demonstrate a ghost state, which is calculated from a
rigorous solution of Yakubovsky equations for theparticle. The ghost states calculated by rigorous and
approximate methods turn out to have a very similar form. It is analytically proved that the trace of the norm
kernel does not depend on the inner wave function we choose.

PACS numbds): 21.45+v, 21.60.Gx, 21.30-x, 27.10:+h

Since 1937[1], when the resonating group method (W] prpoun)=( p1box| Al d1doup)
(RGM) was established, it has been successfully applied to
many light nuclei systems. The method is essentially based =(p1dox|(1=1)[p12up)=0,  (4)

on the variational principle under the conditions that the

clusters remain in the ground state in the low-energy regionyhere y is the relative wave function between the two clus-
and the total wave function is totally antisymmetrized be-ters.
cause of the Pauli exclusion principle. A typical example is Beyond 8Be the a cluster model has been studied in
the two « model[2,3] of ®Be. In the 1970's the RGM had  12c [8—1(],1%0 [11], etc. The correct treatment of the Pauli
great success¢d] and the method was extended to the gen-forhidden states is essential even in the case of bound states
erating coordinate methd@CM) [5], the orthogonality con- - of clusters, where the neglect of the Pauli principle leads
diton model (OCM) [6], the fish-bone optical model to an extreme overbinding. However, even with the condi-
(FBOM) [7], etc. The Pauli exclusion principle plays an im- tion they are overbound, which is still a pending problem
portant role in the relative motion part of the wave function[12_14] in the a cluster model.
because it rules out part of the model space by an orthogo- |t js analytically proved15] that if the inner wave func-
nality condition. The Pauli forbidden stateghost statgsare  tjons are simple products of Gaussian functions, then the
generated by diagonalization of an integral kernel in thesigenvectorai, of Eq. (2) become familiar harmonic oscil-
RGM. The integral kernel is known as the norm kerK)  |ator functions. For the sake of simplicity the four spinless
N which is defined, for example, in the two cluster model asg|yster (@ particle system in'®O has been studied 1] us-
. R R ing the Yakubovsky equatiori46]. Nowadays, it is possible
M, r")=(p1,0(r)|(1—A)| p1,5(r")), (1)  to obtain rigorous solutions of the particle wave function
using realistic potentialgl7]. The recent progress of théN4
where ¢4, ¢,, and.A are two inner cluster wave functions scattering state is reviewed in R¢fl8]. Therefore, it be-
of the system and an antisymmetrizer for all nucleons, recomes possible to compare the ghost states which one ob-
spectively.r is the relative motion coordinate. Namely, the tains from the rigorous Yakubovsky solution of thepar-
ghost statesi,(r) are eigenstates of/ with the eigenvalue ficle. _ _
ya=1: In this paper we would like to choose the most simple
case, thex+N system. The first four nucleons build up the
o ~ . ground state of ther particle, while the fifth particle is the
f dr’ Mr,r")un(r’)=y,us(r). (2 spectator. The nucleons are identical particles, furthermore,
the wave function¢, of a particle is normalized to

The total wave function? of the system (¢alda)=1 and NK is defined as Eql),

|T)y=A| by box) ) N=4(b¢nd|Pagl datnd). )

is orthogonal to the ghost statps; ¢,u,) P45 is the particle exchange operat@t and 5. Figure 1
suggests the picture of three cluster systerlt3N-+N).
The calculation of the NK is done with Jacobi coordinates
*Present address: Institutrf@trahlen- und Kernphysik der Uni- which we show in Fig. 2. The relative Jacobi momenta are
versita Bonn Nussallee 14-16, D-53115 Bonn, Germany. prepared and the relations between the Jacobi coordinates are
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FIG. 1. The diagram of the norm kernel.
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where p; and q; (i=1,2) are Jacobi momenta ofN3+ N

relative motion and N-I—N one, re‘?‘peCt'Vel,y' ) FIG. 3. The ghost state in coordinate space. The gdkghed
Our way of calculating the NK is very similar to the cal- |ine is uy(r) [us(n]1.

culation of a leading(Born) term of the Alt-Grassberger-

Sandhas equatiofi$9,20. For example, in the teR1] they =~ where the subscript “0” of the norm kernel means the an-

treat the Born temZ by the partial wave representation with gular momentum ofj and the kernefV/ will be used later.

a functionF~. In our calculation it is simply replaced as The ghost state is shown in Fig. 3. For our calculation
the eigenvaluey, of Eq. (2) is not exactly equal to one, but

o o 0.937 (if it is renormalized by the abovementioned
f dxj dy 94.9%, y,=0.987). The solid line is the ghost staig cal-
culated from our Yakubovsky solutiafi,, comparing to the
P (cos6) @) dashed line from usual Gaussian function

128 sz) L4

L 4
FNoN,(A1,02) = szld cost

X e, (Y1 P1)) aen, (XY, [Pzl )

u(r)= exXpl — w2 9

where the angled is between the vectorél and ﬁz, N,

and N, the state channels of the partial wave, @gthe  with o =0 x (4x1)/(4+1) whereQ is a common shell
Legendre functionx andy are rests of Jacobi momenta model mode (0.275 fm?) [3]. They are normalized by
which describe the motion of particlé€s, 2, and 3 inside of guﬁ(r)rzdrzl. In the short range our ghost stajé is
the « particle. The numerator 4 is derived from H§). smaller thanu$ . The repulsive core of realistic potentials
As an example, the: wave function17] of the Argonne eficts in this range. This behavior is similar to that of cor-
potentlal (AV14)+ [22] is applied, and we take the case of relation functiong23]. Beyond 4 fm ourug is bigger than
total spinJ=1/2". For the sake of simplicity we assume the u$ because in general the Gaussian function is more quickly

spinj of 3N is almost 1/2 (in fact, 94.9% for the case of decreasing than exponential one. We also show them in the
AV14 potentia), therefore, the angular momentum between 9 pon ' ; ;
momentum spacésee Fig. 4. Here the repulsive core mani-

clustersa and neutron isS wave. This leads t&€€=0. L n G
Under this choice of the partial waves the recoupling co- fests itself by a node at2 fm ~* which is absent ing .
Overall they agree well.

eff|C|entA NNy [21]is 1/4 and one gets To find the most realistic width paramet@rwe optimize
R=|(ug|ug{Q})|?x 100 [%)] in Fig. 5. We could recom-

fdxf dy mend Q=0.24[fm 2] of the Gaussian width parameter
which is similar toQ)=0.275[fm 2] [3].

10 F T T T T

1 (1
No(91,92)= Ef_ld cosd

X ¢a:[l/2+](X!yvpl)¢a:[l/2+](xay1p2)}

11 ~
- Eﬁld cosON(p1,pP2), ®

uo(q) [fm */?]

0.001

0.0001 1 1
0 2 3
g [fm™]

FIG. 4. The ghost staten&0) in momentum space. The solid
(dashed line is ug(q) [ug(q)]. The disconnection of the solid line
FIG. 2. Jacobi momenta. causes from change of sign.
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FIG. 5. The percentagR of the ghost state as a function of _ FIG. 6. The eigens_,tat?pé 1)GOf Eq. (2) in coordinate space.
oscillator parametef). The solid(dashed line is uy (r)[u7(r)].

In Table | we summerize the biggest eigenvalues in e illustrate both NKgFig. 7 for A’y and Fig. 8 for\'y).
uesy,=(—4)" "% n=0,1,2,...[15]. The realistic NK
has a similar spectrum. We compare the stajeandu for

n=1 in Fig. 6. It is remarkable that in this case the realistic 32 1
ghost state has more structure though the eigenvalues ai‘é)(q,Q’)ZW 570
very similar.
The matrix traces TrVy] are given 17, o 1 ,
X ex M(q +q’'“)|sin ﬁqq . (12
6 - S [1\" 16
Tr{NG] :go VHZHZO 16 ~15 " L106&..., The shape is so similar that the differendéf— NC) is also

shown in Fig. 9.

- Although there is only a single ghost state iva\ sys-
Tr[NO]Y:f No(9,9)9%dg=1.0125. (10 tem, in general, the cluster-cluster effective interaction in

0 light nuclei has a lot of ghost states. In this simple case we
could find some remarkable differences in the eigenstate
(n=1) and the eigenvalue fon=2 which might effect
RGM calculations of systems witA>5. For a most prob-
able case such a Pauli blocking will be applied to éha-n
three-body model system. There are already some applica-
Sions [24,25 by using some Pauli methods.

If the wave function ofa particle is renormalized by only
j=12", [5p?dpN(p,p)=1 (0.949: original normwe get
Tr[ANp]Y=1.0666 which must exactly be the number of the
Gaussian form. Because it is analytically proved that th
trace TfN;] does not depend what kinds of the wave
function we choose

0 1 1
Tr[N0]=f0 {Ef_ld cosf

- \/17 cosf 17 cosé 2
X 1_6+2q’ 1_6+_2qqq

1Jl q 0 1 16 11)
== CoSs =_—.

2) 1 V17/16+cos/2® 15

TABLE |. Eigenvalues of the norm kernel.

n n (v h) of uy Yn (va ") of ug [15]
0 0.937 (1.068 1.00000 (2)

1 0.0663 (15.09 0.06666 (16)

2 0.00753 (132.0 0.00391 (256)

FIG. 7. Norm kernel\{ .
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FIG. 8. Norm kernel\/g .

It will be important for benchmark calculations for sys-

tems with more nucleons to look into the ghost states using

rigorous solutiong26] from few-body physics. Note that
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FIG. 9. The difference of the norm kernel&/{ — N/§).

states caused from Faddeev decomposit@®f-29. In this
paper we simply take the physical Yakubovsky solutiomvof
particle to test quantitatively how precise the former Gauss-
ian norm kernel is.

We are grateful for discussions with Professor W.

here we discuss the Pauli forbidden state which is differen6Glockle, and thank Professor H. Witata and Dr. J. Golak for

from the spurious state of the Faddeev calculati@¥%28|.

fruitful discussions during our stay in Cracow. This work

The term “spurious state” has been used a lot in manywas supported by the Deutsche Forschungsgemeinschaft
places, even if a cluster model has no inner structure théH.K. and A.N) and the numerical calculations have been

ghost states appear in the model and they are interpreted

psrformed on the CRAY T3E of the John von Neumann

kinds of spurious states. We should not confuse spurioukstitute for Computing in Jich, Germany.
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