4 research outputs found
Aplicaci贸n de modelos econom茅tricos para cuantificar la evoluci贸n de la resistencia a antibi贸ticos en pacientes hospitalarios de Europa y su asociaci贸n con la legislaci贸n europea
Las infecciones que tienen lugar en pacientes hospitalizados (infecciones nosocomiales) constituyen una seria amenaza para la salud humana, pues existen cuadros concomitantes y un sistema inmune debilitado que ponen en riesgo su recuperaci贸n. Los agentes causantes pueden ser ubicuos en la naturaleza o estar presentes de forma natural en el ser humano, pero en determinadas condiciones algunas cepas de estos microrganismos presentan una elevada patogenicidad. Normalmente acompafia a este car谩cter pat贸geno una extraordinaria capacidad adquirida de resistencia a los tratamientos antibi贸ticos. Tres de los microorganismos m谩s frecuentemente aislados como responsables de estos cuadros son Escherichia coli, Klebsiella pneumoniae y Pseudomonas aeruginosa. Por ello existen protocolos de prevenci贸n en los hospitales encargados de dificultar la selecci贸n, aparici贸n y diseminaci贸n de estas cepas. Asimismo, se documentan los brotes aparecidos aisl谩ndose e identific谩ndose el microorganismo causante, as铆 como las resistencias. Para su determinaci贸n y cuantificaci贸n se emplean pruebas laboratoriales. De esta forma para cada hospital y territorio se puede disponer de estad铆sticas de resistencias referenciadas a un lapso de tiempo determinado. Esta tesis doctoral disefta un modelo estad铆stico permitiendo estudiar retrospectivamente la evoluci贸n de los patrones de resistencia de diferentes microorganismos responsables de infecciones nosocomiales en Europa, desde que su emergencia hizo necesario recoger datos hasta la actualidad. El modelo est谩 basado en la informaci贸n recogida en EARS-Net, la base de datos de resistencia a antibi贸ticos en hospitales de mayor implantaci贸n en la Uni贸n Europea. Los grupos de antibi贸ticos aqu铆 estudiados son carbapenemas, cefalosporinas de tercera generaci贸n (C3G) y fluoroquinolonas, todos ellos arsenal terap茅utico reservados a condiciones donde no se ha observado una mejor铆a cl铆nica con antibi贸ticos de amplio espectro, infecciones complicadas o nosocomiales..
Small-Plasmid-Mediated Antibiotic Resistance Is Enhanced by Increases in Plasmid Copy Number and Bacterial Fitness
Plasmids play a key role in the horizontal spread of antibiotic resistance determinants among bacterial pathogens. When an antibiotic resistance plasmid arrives in a new bacterial host, it produces a fitness cost, causing a competitive disadvantage for the plasmid-bearing bacterium in the absence of antibiotics. On the other hand, in the presence of antibiotics, the plasmid promotes the survival of the clone. The adaptations experienced by plasmid and bacterium in the presence of antibiotics during the first generations of coexistence will be crucial for the progress of the infection and the maintenance of plasmid-mediated resistance once the treatment is over. Here we developed a model system using the human pathogen Haemophilus influenzae carrying the small plasmid pB1000 conferring resistance to 尾-lactam antibiotics to investigate host and plasmid adaptations in the course of a simulated ampicillin therapy. Our results proved that plasmid-bearing clones compensated for the fitness disadvantage during the first 100 generations of plasmid-host adaptation. In addition, ampicillin treatment was associated with an increase in pB1000 copy number. The augmentation in both bacterial fitness and plasmid copy number gave rise to H. influenzae populations with higher ampicillin resistance levels. In conclusion, we show here that the modulations in bacterial fitness and plasmid copy number help a plasmid-bearing bacterium to adapt during antibiotic therapy, promoting both the survival of the host and the spread of the plasmid
Small-plasmid-mediated antibiotic resistance is enhanced by increases in plasmid copy number and bacterial fitness
Plasmids play a key role in the horizontal spread of antibiotic resistance determinants among bacterial pathogens. When an antibiotic resistance plasmid arrives in a new bacterial host, it produces a fitness cost, causing a competitive disadvantage for the plasmid-bearing bacterium in the absence of antibiotics. On the other hand, in the presence of antibiotics, the plasmid promotes the survival of the clone. The adaptations experienced by plasmid and bacterium in the presence of antibiotics during the first generations of coexistence will be crucial for the progress of the infection and the maintenance of plasmid-mediated resistance once the treatment is over. Here we developed a model system using the human pathogen Haemophilus influenzae carrying the small plasmid pB1000 conferring resistance to 尾-lactam antibiotics to investigate host and plasmid adaptations in the course of a simulated ampicillin therapy. Our results proved that plasmid-bearing clones compensated for the fitness disadvantage during the first 100 generations of plasmid-host adaptation. In addition, ampicillin treatment was associated with an increase in pB1000 copy number. The augmentation in both bacterial fitness and plasmid copy number gave rise to H. influenzae populations with higher ampicillin resistance levels. In conclusion, we show here that the modulations in bacterial fitness and plasmid copy number help a plasmid-bearing bacterium to adapt during antibiotic therapy, promoting both the survival of the host and the spread of the plasmid