260 research outputs found

    The role of the ubiquitination-proteasome pathway in breast cancer: Applying drugs that affect the ubiquitin-proteasome pathway to the therapy of breast cancer

    Get PDF
    The ubiquitin-proteasome pathway is responsible for most eukaryotic intracellular protein degradation. This pathway has been validated as a target for antineoplastic therapy using both in vitro and preclinical models of human malignancies, and is influenced as part of the mechanism of action of certain chemotherapeutic agents. Drugs whose primary action involves modulation of ubiquitin-proteasome activity, most notably the proteasome inhibitor PS-341, are currently being evaluated in clinical trials, and have already been found to have significant antitumor efficacy. On the basis of the known mechanisms by which these agents work, and the available clinical data, they would seem to be well suited for the treatment of breast neoplasms. Such drugs, alone and especially in combination with current chemotherapeutics, may well represent important advances in the therapy of patients with breast cancer

    Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin

    Get PDF
    Single nucleotide polymorphisms (SNPs) in the multiple drug resistance protein 1 (MRP1) and P-glycoprotein 1 (MDR1) genes modulate their ability to mediate drug resistance. We therefore sought to retrospectively evaluate their influence on outcomes in relapsed and/or refractory myeloma patients treated with bortezomib or bortezomib with pegylated liposomal doxorubicin (PLD). The MRP1/R723Q polymorphism was found in five subjects among the 279 patient study population, all of whom received PLD + bortezomib. Its presence was associated with a longer time to progression (TTP; median 330 vs. 129 days; p = 0.0008), progression-free survival (PFS; median 338 vs. 129 days; p = 0.0006), and overall survival (p = 0.0045). MDR1/3435(C > T), which was in Hardy–Weinberg equilibrium, showed a trend of association with PFS (p = 0.0578), response rate (p = 0.0782) and TTP (p = 0.0923) in PLD + bortezomib patients, though no correlation was found in the bortezomib arm. In a recessive genetic model, MDR1/3435 T was significantly associated with a better TTP (p = 0.0405) and PFS (p = 0.0186) in PLD + bortezomib patients. These findings suggest a potential role for MRP1 and MDR1 SNPs in modulating the long-term outcome of relapsed and/or refractory myeloma patients treated with PLD + bortezomib. Moreover, they support prospective studies to determine if such data could be used to tailor therapy to the genetic makeup of individual patients

    DSMM XI study: dose definition for intravenous cyclophosphamide in combination with bortezomib/dexamethasone for remission induction in patients with newly diagnosed myeloma

    Get PDF
    A clinical trial was initiated to evaluate the recommended dose of cyclophosphamide in combination with bortezomib and dexamethasone as induction treatment before stem cell transplantation for younger patients with newly diagnosed multiple myeloma (MM). Thirty patients were treated with three 21-day cycles of bortezomib 1.3 mg/m2 on days 1, 4, 8, and 11 plus dexamethasone 40 mg on the day of bortezomib injection and the day after plus cyclophosphamide at 900, 1,200, or 1,500 mg/m2 on day 1. The maximum tolerated dose of cyclophosphamide was defined as 900 mg/m2. At this dose level, 92% of patients achieved at least a partial response. The overall response rate [complete response (CR) plus partial response (PR)] across all dose levels was 77%, with a 10% CR rate. No patient experienced progressive disease. The most frequent adverse events were hematological and gastrointestinal toxicities as well as neuropathy. The results suggest that bortezomib in combination with cyclophosphamide at 900 mg/m2 and dexamethasone is an effective induction treatment for patients with newly diagnosed MM that warrants further investigation

    Bortezomib/docetaxel combination therapy in patients with anthracycline-pretreated advanced/metastatic breast cancer: a phase I/II dose-escalation study

    Get PDF
    The aim of this study was to determine the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of bortezomib plus docetaxel in patients with anthracycline-pretreated advanced/metastatic breast cancer. Forty-eight patients received up to eight 21-day cycles of docetaxel (60–100 mg m−2 on day 1) plus bortezomib (1.0–1.5 mg m−2 on days 1, 4, 8, and 11). Pharmacodynamic and pharmacokinetic analyses were performed in a subset of patients. Five patients experienced DLTs: grade 3 bone pain (n=1) and febrile neutropenia (n=4). The MTD was bortezomib 1.5 mg m−2 plus docetaxel 75 mg m−2. All 48 patients were assessable for safety and efficacy. The most common adverse events were diarrhoea, nausea, alopecia, asthenia, and vomiting. The most common grade 3/4 toxicities were neutropenia (44%), and febrile neutropenia and diarrhoea (each 19%). Overall patient response rate was 29%. Median time to progression was 5.4 months. In patients with confirmed response, median time to response was 1.3 months and median duration of response was 3.2 months. At the MTD, response rate was 38%. Pharmacokinetic characteristics of bortezomib/docetaxel were comparable with single-agent data. Addition of docetaxel appeared not to affect bortezomib inhibition of 20S proteasome activity. Mean alpha-1 acid glycoprotein concentrations increased from baseline at nearly all time points across different bortezomib dose levels. Bortezomib plus docetaxel is an active combination for anthracycline-pretreated advanced/metastatic breast cancer. The safety profile is manageable and consistent with the side effects of the individual agents

    Hematology oncology practice in the Asia-Pacific APHCON survey results from the 6th international hematologic malignancies conference: bridging the gap 2015, Beijing, China

    Get PDF
    This report serves as a snapshot of the state-of-knowledge in the Asia Pacific (APAC) Hematology Oncology community, and establishes a baseline for longitudinal investigations to follow changes in best practices over time. The objective of this study was to understand the approach to hematologic diseases, common standards of care and best practices, issues that remain controversial or debated, and educational or resource gaps that warrant attention. We used mobile application to disseminate and distribute questionnaires to delegates during the 6th international hematologic malignancies conference hosted by the APAC Hematology Consortium at Beijing, China. User responses were collected in an anonymous fashion. We report survey results in two ways: the overall responses, and responses as stratified between Chinese physicians and 'Other' represented nationalities. Overall geographical concordance in survey responses was positive and strong. Perhaps more interesting than instances of absolute agreement, these data provide a unique opportunity to identify topics in which physician knowledge or opinions diverge. We assigned questions from all modules to broad categories of: patient information; diagnosis; treatment preference; transplantation; and general knowledge/opinion. On average, we observed a geographic difference of 15% for any particular answer choice, and this was fairly constant across survey modules. These results reveal utility and need for widespread and ongoing initiatives to assess knowledge and provide evidence-based education in real time. The data will be made more valuable by longitudinal participation, such that we can monitor changes in the state of the art over time.published_or_final_versio

    Cimetidine inhibits salivary gland tumor cell adhesion to neural cells and induces apoptosis by blocking NCAM expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cimetidine, a histamine type-2 receptor antagonist, has been reported to inhibit the growth of glandular tumors such as colorectal cancer, however the mechanism of action underlying this effect is unknown. Adenoid cystic carcinoma is well known as a malignant salivary gland tumor which preferentially invades neural tissues. We demonstrated previously that human salivary gland tumor (HSG) cells spontaneously express neural cell adhesion molecule (NCAM), that HSG cell proliferation may be controlled via a homophilic (NCAM-NCAM) binding mechanism and that NCAM may be associated with perineural invasion by malignant salivary gland tumors. We further demonstrated that cimetidine inhibited NCAM expression and induced apoptosis in HSG cells. Here, we investigated the effects of cimetidine on growth and perineural/neural invasion of salivary gland tumor cells.</p> <p>Methods</p> <p>In this study, we have examined the effect of cimetidine on cancer cell adhesion to neural cells <it>in vitro</it>, one of the critical steps of cancer invasion and metastasis. We have also used an <it>in vivo </it>carcinogenesis model to confirm the effect of cimetidine.</p> <p>Results</p> <p>We have demonstrated for the first time that cimetidine can block the adhesion of HSG cells to neural cell monolayers and that it can also induce significant apoptosis in the tumor mass in a nude mouse model. We also demonstrated that these apoptotic effects of cimetidine might occur through down-regulation of the cell surface expression of NCAM on HSG cells. Cimetidine-mediated down-regulation of NCAM involved suppression of the nuclear translocation of NF-κB, a transcriptional activator of NCAM gene expression.</p> <p>Conclusion</p> <p>These findings suggest that growth and perineural/neural invasion of salivary gland tumors can be blocked by administration of cimetidine via induction of apoptosis and in which NCAM plays a role.</p

    Small interfering RNA targeting mcl-1 enhances proteasome inhibitor-induced apoptosis in various solid malignant tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Targeting the ubiquitin-proteasome pathway is a promising approach for anticancer strategies. Recently, we found Bik accumulation in cancer cell lines after they were treated with bortezomib. However, recent evidence indicates that proteasome inhibitors may also induce the accumulation of anti-apoptotic Bcl-2 family members. The current study was designed to analyze the levels of several anti-apoptotic members of Bcl-2 family in different human cancer cell lines after they were treated with proteasome inhibitors.</p> <p>Methods</p> <p>Different human cancer cell lines were treated with proteasome inhibitors. Western blot were used to investigate the expression of Mcl-1 and activation of mitochondrial apoptotic signaling. Cell viability was investigated using SRB assay, and induction of apoptosis was measured using flow cytometry.</p> <p>Results</p> <p>We found elevated Mcl-1 level in human colon cancer cell lines DLD1, LOVO, SW620, and HCT116; human ovarian cancer cell line SKOV3; and human lung cancer cell line H1299, but not in human breast cancer cell line MCF7 after they were treated with bortezomib. This dramatic Mcl-1 accumulation was also observed when cells were treated with other two proteasome inhibitors, MG132 and calpain inhibitor I (ALLN). Moreover, our results showed Mcl-1 accumulation was caused by stabilization of the protein against degradation. Reducing Mcl-1 accumulation by Mcl-1 siRNA reduced Mcl-1 accumulation and enhanced proteasome inhibitor-induced cell death and apoptosis, as evidenced by the increased cleavage of caspase-9, caspase-3, and poly (ADP-ribose) polymerase.</p> <p>Conclusions</p> <p>Our results showed that it was not only Bik but also Mcl-1 accumulation during the treatment of proteasome inhibitors, and combining proteasome inhibitors with Mcl-1 siRNA would enhance the ultimate anticancer effect suggesting this combination might be a more effective strategy for cancer therapy.</p
    • …
    corecore