6 research outputs found
Postprandial differences in the plasma metabolome of healthy Finnish subjects after intake of a sourdough fermented endosperm rye bread versus white wheat bread
<p>Abstract</p> <p>Background</p> <p>The mechanism behind the lowered postprandial insulin demand observed after rye bread intake compared to wheat bread is unknown. The aim of this study was to use the metabolomics approach to identify potential metabolites related to amino acid metabolism involved in this mechanism.</p> <p>Methods</p> <p>A sourdough fermented endosperm rye bread (RB) and a standard white wheat bread (WB) as a reference were served in random order to 16 healthy subjects. Test bread portions contained 50 g available carbohydrate. <it>In vitro </it>hydrolysis of starch and protein were performed for both test breads. Blood samples for measuring glucose and insulin concentrations were drawn over 4 h and gastric emptying rate (GER) was measured. Changes in the plasma metabolome were investigated by applying a comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry metabolomics platform (GC×GC-TOF-MS).</p> <p>Results</p> <p>Plasma insulin response to RB was lower than to WB at 30 min (P = 0.004), 45 min (P = 0.002) and 60 min (P < 0.001) after bread intake, and plasma glucose response was significantly higher at time point 90 min after RB than WB intake (P = 0.045). The starch hydrolysis rate was higher for RB than WB, contrary to the <it>in vitro </it>protein digestibility. There were no differences in GER between breads. From 255 metabolites identified by the metabolomics platform, 26 showed significant postprandial relative changes after 30 minutes of bread intake (p and q values < 0.05). Among them, there were changes in essential amino acids (phenylalanine, methionine, tyrosine and glutamic acid), metabolites involved in the tricarboxylic acid cycle (alpha-ketoglutaric, pyruvic acid and citric acid) and several organic acids. Interestingly, the levels of two compounds involved in the tryptophan metabolism (picolinic acid, ribitol) significantly changed depending on the different bread intake.</p> <p>Conclusions</p> <p>A single meal of a low fibre sourdough rye bread producing low postprandial insulin response brings in several changes in plasma amino acids and their metabolites and some of these might have properties beneficial for health.</p
Open Heavy Flavor Studies for the ECCE Detector at the Electron Ion Collider
International audienceThe ECCE detector has been recommended as the selected reference detector for the future Electron-Ion Collider (EIC). A series of simulation studies have been carried out to validate the physics feasibility of the ECCE detector. In this paper, detailed studies of heavy flavor hadron and jet reconstruction and physics projections with the ECCE detector performance and different magnet options will be presented. The ECCE detector has enabled precise EIC heavy flavor hadron and jet measurements with a broad kinematic coverage. These proposed heavy flavor measurements will help systematically study the hadronization process in vacuum and nuclear medium especially in the underexplored kinematic region
Open Heavy Flavor Studies for the ECCE Detector at the Electron Ion Collider
International audienceThe ECCE detector has been recommended as the selected reference detector for the future Electron-Ion Collider (EIC). A series of simulation studies have been carried out to validate the physics feasibility of the ECCE detector. In this paper, detailed studies of heavy flavor hadron and jet reconstruction and physics projections with the ECCE detector performance and different magnet options will be presented. The ECCE detector has enabled precise EIC heavy flavor hadron and jet measurements with a broad kinematic coverage. These proposed heavy flavor measurements will help systematically study the hadronization process in vacuum and nuclear medium especially in the underexplored kinematic region
ECCE sensitivity studies for single hadron transverse single spin asymmetry measurements
International audienceWe performed feasibility studies for various single transverse spin measurements that are related to the Sivers effect, transversity and the tensor charge, and the Collins fragmentation function. The processes studied include semi-inclusive deep inelastic scattering (SIDIS) where single hadrons (pions and kaons) were detected in addition to the scattered DIS lepton. The data were obtained in pythia6 and geant4 simulated e+p collisions at 18 GeV on 275 GeV, 18 on 100, 10 on 100, and 5 on 41 that use the ECCE detector configuration. Typical DIS kinematics were selected, most notably Q2>1GeV2, and cover the x range from 10−4 to 1. The single spin asymmetries were extracted as a function of x and Q2, as well as the semi-inclusive variables z, which corresponds to the momentum fraction the detected hadron carries relative to the struck parton, and PT, which corresponds to the transverse momentum of the detected hadron relative to the virtual photon. They are obtained in azimuthal moments in combinations of the azimuthal angles of the hadron transverse momentum and transverse spin of the nucleon relative to the lepton scattering plane. In order to extract asymmetries, the initially unpolarized MonteCarlo was re-weighted in the true kinematic variables, hadron types and parton flavors based on global fits of fixed target SIDIS experiments and e+e− annihilation data. The expected statistical precision of such measurements is extrapolated to 10 fb−1 and potential systematic uncertainties are approximated given the deviations between true and reconstructed yields. Similar neutron information is obtained by comparing the ECCE e+p pseudo-data with the same from the EIC Yellow Report and scaling the corresponding Yellow Report e+3He pseudo-data uncertainties accordingly. The impact on the knowledge of the Sivers functions, transversity and tensor charges, and the Collins function has then been evaluated in the same phenomenological extractions as in the Yellow Report. The impact is found to be comparable to that obtained with the parametrized Yellow Report detector and shows that the ECCE detector configuration can fulfill the physics goals on these quantities
ECCE sensitivity studies for single hadron transverse single spin asymmetry measurements
International audienceWe performed feasibility studies for various single transverse spin measurements that are related to the Sivers effect, transversity and the tensor charge, and the Collins fragmentation function. The processes studied include semi-inclusive deep inelastic scattering (SIDIS) where single hadrons (pions and kaons) were detected in addition to the scattered DIS lepton. The data were obtained in pythia6 and geant4 simulated e+p collisions at 18 GeV on 275 GeV, 18 on 100, 10 on 100, and 5 on 41 that use the ECCE detector configuration. Typical DIS kinematics were selected, most notably Q2>1GeV2, and cover the x range from 10−4 to 1. The single spin asymmetries were extracted as a function of x and Q2, as well as the semi-inclusive variables z, which corresponds to the momentum fraction the detected hadron carries relative to the struck parton, and PT, which corresponds to the transverse momentum of the detected hadron relative to the virtual photon. They are obtained in azimuthal moments in combinations of the azimuthal angles of the hadron transverse momentum and transverse spin of the nucleon relative to the lepton scattering plane. In order to extract asymmetries, the initially unpolarized MonteCarlo was re-weighted in the true kinematic variables, hadron types and parton flavors based on global fits of fixed target SIDIS experiments and e+e− annihilation data. The expected statistical precision of such measurements is extrapolated to 10 fb−1 and potential systematic uncertainties are approximated given the deviations between true and reconstructed yields. Similar neutron information is obtained by comparing the ECCE e+p pseudo-data with the same from the EIC Yellow Report and scaling the corresponding Yellow Report e+3He pseudo-data uncertainties accordingly. The impact on the knowledge of the Sivers functions, transversity and tensor charges, and the Collins function has then been evaluated in the same phenomenological extractions as in the Yellow Report. The impact is found to be comparable to that obtained with the parametrized Yellow Report detector and shows that the ECCE detector configuration can fulfill the physics goals on these quantities