1,312 research outputs found
Another Majorana Idea: Real and Imaginary in the Weinberg Theory
The Majorana discernment of neutrality is applied to the solutions of
Weinberg equations in the representation of the Poincar\`e
group.Comment: ReVTeX file, 6pp., no figure
Magneto-Acoustic Waves of Small Amplitude in Optically Thin Quasi-Isentropic Plasmas
The evolution of quasi-isentropic magnetohydrodynamic waves of small but
finite amplitude in an optically thin plasma is analyzed. The plasma is assumed
to be initially homogeneous, in thermal equilibrium and with a straight and
homogeneous magnetic field frozen in. Depending on the particular form of the
heating/cooling function, the plasma may act as a dissipative or active medium
for magnetoacoustic waves, while Alfven waves are not directly affected. An
evolutionary equation for fast and slow magnetoacoustic waves in the single
wave limit, has been derived and solved, allowing us to analyse the wave
modification by competition of weakly nonlinear and quasi-isentropic effects.
It was shown that the sign of the quasi-isentropic term determines the scenario
of the evolution, either dissipative or active. In the dissipative case, when
the plasma is first order isentropically stable the magnetoacoustic waves are
damped and the time for shock wave formation is delayed. However, in the active
case when the plasma is isentropically overstable, the wave amplitude grows,
the strength of the shock increases and the breaking time decreases. The
magnitude of the above effects depends upon the angle between the wave vector
and the magnetic field. For hot (T > 10^4 K) atomic plasmas with solar
abundances either in the interstellar medium or in the solar atmosphere, as
well as for the cold (T < 10^3 K) ISM molecular gas, the range of temperature
where the plasma is isentropically unstable and the corresponding time and
length-scale for wave breaking have been found.Comment: 14 pages, 10 figures. To appear in ApJ January 200
The Spectrum of the Brown Dwarf Gliese 229B
We present a spectrum of the cool (T_eff = 900 K) brown dwarf Gliese 229B.
This spectrum, with a relatively high signal-to-noise ratio per spectral
resolution element (> 30), spans the wavelength range from 0.837 microns to 5.0
microns. We identify a total of four different major methane absorption
features, including the fundamental band at 3.3 microns, at least four steam
bands, and two neutral cesium features. We confirm the recent detection of
carbon monoxide (CO) in excess of what is predicted by thermochemical
equilibrium calculations. Carbon is primarily involved in a chemical balance
between methane and CO at the temperatures and pressures present in the outer
parts of a brown dwarf. At lower temperatures, the balance favors methane,
while in the deeper, hotter regions, the reaction reverses to convert methane
into CO. The presence of CO in the observable part of the atmosphere is
therefore a sensitive indicator of vertical flows. The high signal-to-noise
ratio in the 1 to 2.5 microns region permits us to place constraints on the
quantity of dust in the atmosphere of the brown dwarf. We are unable to
reconcile the observed spectrum with synthetic spectra that include the
presences of dust. The presence of CO but lack of dust may be a clue to the
location of the boundaries of the outer convective region of the atmosphere:
The lack of dust may mean that it is not being conveyed into the photosphere by
convection, or that it exists in patchy clouds. If the dust is not in clouds,
but rather sits below the outer convective region, we estimate that the
boundary between outer convective and inner radiative layers is between 1250 K
and 1600 K, in agreement with recent models.Comment: 15 pages, 8 figure
Women\u27s Changing Attitudes Toward Divorce, 1974â2002: Evidence for an Educational Crossover
This article examines trends in divorce attitudes of young adult women in the United States by educational attainment from 1974 to 2002. Women with 4âyear college degrees, who previously had the most permissive attitudes toward divorce, have become more restrictive in their attitudes toward divorce than high school graduates and women with some college education, whereas women with no high school diplomas have increasingly permissive attitudes toward divorce. We examine this educational crossover in divorce attitudes in the context of variables correlated with women\u27s educational attainment, including family attitudes and religion, income and occupational prestige, and family structure. We conclude that the educational crossover in divorce attitudes is associated most strongly with work and family structure variables
Non-Commutative Correction to Thin Shell Collapse in Reissner Nordstrm Geometry
This paper investigates the polytropic matter shell collapse in the
non-commutative Reissner-Nordstrm geometry. Using the Israel
criteria, equation of motion for the polytropic matter shell is derived. In
order to explore the physical aspects of this equation, the most general
equation of state, , has been used for finite
and infinite values of . The effective potentials corresponding to the
equation of motion have been used to explain different states of the matter
shell collapse. The numerical solution of the equation of motion predicts
collapse as well as expansion depending on the choice of initial data. Further,
in order to include the non-commutative correction, we modify the matter
components and re-formulate the equation of motion as well as the corresponding
effective potentials by including non-commutative factor and charge parameter.
It is concluded that charge reduces the velocity of the expanding or collapsing
matter shell but does not bring the shell to static position. While the
non-commutative factor with generic matter favors the formation of black hole.Comment: 18 pages,17 figure
Coulomb Blockade Resonances in Quantum Wires
The conductance through a quantum wire of cylindrical cross section and a
weak bulge is solved exactly for two electrons within the Landauer-Buettiker
formalism. We show that this 'open' quantum dot exhibits spin-dependent Coulomb
blockade resonances resulting in two anomalous structure on the rising edge to
the first conductance plateau, one near 0.25(2e^2/h), related to a singlet
resonance, and one near 0.7(2e^2/h), related to a triplet resonance. These
resonances are generic and robust, occurring for other types of quantum wire
and surviving to temperatures of a few degrees.Comment: 5 pages, 3 postscript files with figures; uses REVTe
Compact Stars - How Exotic Can They Be?
Strong interaction physics under extreme conditions of high temperature
and/or density is of central interest in modern nuclear physics for
experimentalists and theorists alike. In order to investigate such systems,
model approaches that include hadrons and quarks in a unified approach, will be
discussed. Special attention will be given to high-density matter as it occurs
in neutron stars. Given the current observational limits for neutron star
masses, the properties of hyperonic and hybrid stars will be determined. In
this context especially the question of the extent, to which exotic particles
like hyperons and quarks affect star masses, will be discussed.Comment: Contributon to conference "Nuclear Physics: Present and Future", held
in Boppard (Germany), May 201
Hamiltonian formalism for the Oppenheimer-Snyder model
A family of effective actions in Hamiltonian form is derived for a
self-gravitating sphere of isotropic homogeneous dust. Starting from the
Einstein-Hilbert action for barotropic perfect fluids and making use of the
symmetry and equation of state of the matter distribution we obtain reduced
actions for two canonical variables, namely the radius of the sphere and its
ADM energy, the latter being conserved along trajectories of the former. These
actions differ by the value of the (conserved) geodesic energy of the radius of
the sphere which defines (disconnected) classes of solutions in correspondence
to the inner geometry and proper volume of the sphere. Each class is thus
treated as one constrained dynamical system and the union of all classes covers
the full phase space of the model. Generalization to the (inhomogeneous) Tolman
model is shown to be straightforward. Quantization is also discussed.Comment: RevTeX, 10 pages, no figure
Metal Enrichment in the Reionization Epoch
The presence of elements heavier than helium ("metals") is of fundamental
importance for a large number of astrophysical processes occurring in planet,
star and galaxy formation; it also affects cosmic structure formation and
evolution in several ways. Even a small amount of heavy elements can
dramatically alter the chemistry of the gas, opening the path to complex
molecules. Metals might enhance the ability of the gas to radiate away its
thermal energy, thus favoring the formation of gravitationally bound objects;
they can also condensate in a solid phase (dust grains), partly or totally
blocking radiation from luminous sources. Finally, they represent useful
tracers of energy deposition by stars and probe the physical properties of the
environment by absorption or emission lines. Last, but certainly not least,
life -- as we know it on Earth -- is tightly related to the presence of at
least some of the heavy elements. In this pedagogical review I will concentrate
on the connection between early metal enrichment and cosmic reionization. As we
will see these two processes are intimately connected and their joint study
might turn out to be fundamental in understanding the overall evolution of the
Universe during the first billion years after the Big Bang, an epoch
corresponding to redshifts z>6.Comment: Book chapter in Understanding the Epoch of Cosmic Reionization:
Challenges and Progress, Springer International Publishing, Ed. Andrei
Mesinger, ISBN 978-3-319-21956-1. arXiv admin note: text overlap with
arXiv:astro-ph/0007248 by other author
Electron exchange model potential: Application to positronium-helium scattering
The formulation of a suitable nonlocal model potential for electron exchange
is presented, checked with electron-hydrogen and electron-helium scattering,
and applied to the study of elastic and inelastic scattering and ionization of
ortho positronium (Ps) by helium. The elastic scattering and the
excitations of Ps are investigated using a three-Ps-state close-coupling
approximation. The higher () excitations and ionization of Ps atom are
treated in the framework of Born approximation with present exchange.
Calculations are reported of phase shifts, and elastic, Ps-excitation, and
total cross sections. The present target elastic total cross section agrees
well with experimental results at thermal to medium energies.Comment: 16 latex pages, 7 postscript figure
- âŠ