9 research outputs found

    Decreased circulating branched-chain amino acids are associated with development of Alzheimer’s disease in elderly individuals with mild cognitive impairment

    Get PDF
    BackgroundNutritional epidemiology has shown that inadequate dietary protein intake is associated with poor brain function in the elderly population. The plasma free amino acid (PFAA) profile reflects nutritional status and may have the potential to predict future changes in cognitive function. Here, we report the results of a 2-year interim analysis of a 3-year longitudinal study following mild cognitive impairment (MCI) participants.MethodIn a multicenter prospective cohort design, MCI participants were recruited, and fasting plasma samples were collected. Based on clinical assessment of cognitive function up to 2 years after blood collection, MCI participants were divided into two groups: remained with MCI or reverted to cognitively normal (“MCI-stable,” N = 87) and converted to Alzheimer’s disease (AD) (“AD-convert,” N = 68). The baseline PFAA profile was compared between the two groups. Stratified analysis based on apolipoprotein E ε4 (APOE ε4) allele possession was also conducted.ResultsPlasma concentrations of all nine essential amino acids (EAAs) were lower in the AD-convert group. Among EAAs, three branched-chain amino acids (BCAAs), valine, leucine and isoleucine, and histidine (His) exhibited significant differences even in the logistic regression model adjusted for potential confounding factors such as age, sex, body mass index (BMI), and APOE ε4 possession (p < 0.05). In the stratified analysis, differences in plasma concentrations of these four EAAs were more pronounced in the APOE ε4-negative group.ConclusionThe PFAA profile, especially decreases in BCAAs and His, is associated with development of AD in MCI participants, and the difference was larger in the APOE ε4-negative population, suggesting that the PFAA profile is an independent risk indicator for AD development. Measuring the PFAA profile may have importance in assessing the risk of AD conversion in the MCI population, possibly reflecting nutritional status.Clinical trial registration[https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000025322], identifier [UMIN000021965]

    Involvement of salicylic acid signal transduction in aluminum-responsive oxidative burst in Arabidopsis thaliana cell suspension culture

    No full text
    To date, a number of studies have documented the toxic impacts of Al ions in plant cells. One of the key factors required for Al cytotoxicity is the generation of reactive oxygen species (ROS). Here we observed that Al treatments of suspension-cultured Arabidopsis thaliana cells resulted in biphasic superoxide generation monitored with chemiluminescence. Among six respiratory burst oxidase homologs (Atrbohs) coding for plant NADPH oxidase, AtrbohD was shown to be the only gene responsive to Al. As the expression of AtrbohD was rapid and long-lasting (1 min to 24 h). Al-induced superoxide generation, AtrbohD expression and cell death were all inhibited by NADPH oxidase inhibitor and superoxide dismutase. Interestingly, Al-induced AtrbohD expression and cell death were inhibited in the mutant and transgenic cell lines lacking salicylic acid biosyhthesis and accumulation (sid2 and NahG). Involvements of salicylic acid signaling in Al-induced AtrbohD expression and cell death development were also confirmed by the use of npr1 mutant cells and NPR1-overexpressing cells. Taken together, there would be a loop of SA signaling and SA-dependent expression of AtrbohD gene leading to prolonged ROS production and cell death development in the Al-exposed Arabidopsis cells

    Resident stroma-secreted chemokine CCL2 governs myeloid-derived suppressor cells in the tumor microenvironment

    No full text
    Accumulating evidence has shown that cancer stroma and BM-derived cells (BMDCs) in the tumor microenvironment (TME) play vital roles in tumor progression. However, the mechanism by which oral cancer stroma recruits any particular subset of BMDCs remains largely unknown. Here, we sought to identify the subset of BMDCs that is recruited by cancer stroma. We established a sequential transplantation model in BALB/c nude mice, including (a) BM transplantation of GFP-expressing cells and (b) coxenografting of patient-derived stroma (PDS; 2 cases, designated PDS1 and PDS2) with oral cancer cells (HSC-2). As controls, xenografting was performed with HSC-2 alone or in combination with normal human dermal fibroblasts (HDF). PDS1, PDS2, and HDF all promoted BMDC migration in vitro and recruitment in vivo. Multicolor immunofluorescence revealed that the PDS coxenografts recruited Arginase-1(+)CD11b(+)GR1(+)GFP(+) cells, which are myeloid-derived suppressor cells (MDSCs), to the TME, whereas the HDF coxenograft did not. Screening using microarrays revealed that PDS1 and PDS2 expressed CCL2 mRNA (encoding C-C motif chemokine ligand 2) at higher levels than did HDF. Indeed, PDS xenografts contained significantly higher proportions of CCL2(+) stromal cells and CCR2(+)Arginase-1(+)CD11b(+)GR1(+) MDSCs (as receiver cells) than the HDF coxenograft. Consistently, a CCL2 synthesis inhibitor and a CCR2 antagonist significantly inhibited the PDS-driven migration of BM cells in vitro. Furthermore, i.p. injection of the CCR2 antagonist to the PDS xenograft models significantly reduced the CCR2(+)Arginase-1(+)CD11b(+)GR1(+) MDSC infiltration to the TME. In conclusion, oral cancer stroma-secreted CCL2 is a key signal for recruiting CCR2(+) MDSCs from BM to the TME

    Resident stroma-secreted chemokine CCL2 governs myeloid-derived suppressor cells in the tumor microenvironment

    No full text
    Accumulating evidence has shown that cancer stroma and BM-derived cells (BMDCs) in the tumor microenvironment (TME) play vital roles in tumor progression. However, the mechanism by which oral cancer stroma recruits any particular subset of BMDCs remains largely unknown. Here, we sought to identify the subset of BMDCs that is recruited by cancer stroma. We established a sequential transplantation model in BALB/c nude mice, including (a) BM transplantation of GFP-expressing cells and (b) coxenografting of patient-derived stroma (PDS; 2 cases, designated PDS1 and PDS2) with oral cancer cells (HSC-2). As controls, xenografting was performed with HSC-2 alone or in combination with normal human dermal fibroblasts (HDF). PDS1, PDS2, and HDF all promoted BMDC migration in vitro and recruitment in vivo. Multicolor immunofluorescence revealed that the PDS coxenografts recruited Arginase-1(+)CD11b(+)GR1(+)GFP(+) cells, which are myeloid-derived suppressor cells (MDSCs), to the TME, whereas the HDF coxenograft did not. Screening using microarrays revealed that PDS1 and PDS2 expressed CCL2 mRNA (encoding C-C motif chemokine ligand 2) at higher levels than did HDF. Indeed, PDS xenografts contained significantly higher proportions of CCL2(+) stromal cells and CCR2(+)Arginase-1(+)CD11b(+)GR1(+) MDSCs (as receiver cells) than the HDF coxenograft. Consistently, a CCL2 synthesis inhibitor and a CCR2 antagonist significantly inhibited the PDS-driven migration of BM cells in vitro. Furthermore, i.p. injection of the CCR2 antagonist to the PDS xenograft models significantly reduced the CCR2(+)Arginase-1(+)CD11b(+)GR1(+) MDSC infiltration to the TME. In conclusion, oral cancer stroma-secreted CCL2 is a key signal for recruiting CCR2(+) MDSCs from BM to the TME

    Development of a Novel Nutrition-Related Multivariate Biomarker for Mild Cognitive Impairment Based on the Plasma Free Amino Acid Profile

    No full text
    Nutritional epidemiology has shown the importance of protein intake for maintaining brain function in the elderly population. Mild cognitive impairment (MCI) may be associated with malnutrition, especially protein intake. We explored blood-based biomarkers linking protein nutritional status with MCI in a multicenter study. In total, 219 individuals with MCI (79.5 ± 5.7 year) from 10 institutions and 220 individuals who were cognitively normal (CN, 76.3 ± 6.6 year) in four different cities in Japan were recruited. They were divided into the training (120 MCI and 120 CN) and validation (99 MCI and 100 CN) groups. A model involving concentrations of PFAAs and albumin to discriminate MCI from CN individuals was constructed by multivariate logistic regression analysis in the training dataset, and the performance was evaluated in the validation dataset. The concentrations of some essential amino acids and albumin were significantly lower in MCI group than CN group. An index incorporating albumin and PFAA discriminated MCI from CN participants with the AUC of 0.705 (95% CI: 0.632–0.778), and the sensitivities at specificities of 90% and 60% were 25.3% and 76.8%, respectively. No significant association with BMI or APOE status was observed. This cross-sectional study suggests that the biomarker changes in MCI group may be associated with protein nutrition

    Data_Sheet_1_Decreased circulating branched-chain amino acids are associated with development of Alzheimer’s disease in elderly individuals with mild cognitive impairment.docx

    No full text
    BackgroundNutritional epidemiology has shown that inadequate dietary protein intake is associated with poor brain function in the elderly population. The plasma free amino acid (PFAA) profile reflects nutritional status and may have the potential to predict future changes in cognitive function. Here, we report the results of a 2-year interim analysis of a 3-year longitudinal study following mild cognitive impairment (MCI) participants.MethodIn a multicenter prospective cohort design, MCI participants were recruited, and fasting plasma samples were collected. Based on clinical assessment of cognitive function up to 2 years after blood collection, MCI participants were divided into two groups: remained with MCI or reverted to cognitively normal (“MCI-stable,” N = 87) and converted to Alzheimer’s disease (AD) (“AD-convert,” N = 68). The baseline PFAA profile was compared between the two groups. Stratified analysis based on apolipoprotein E ε4 (APOE ε4) allele possession was also conducted.ResultsPlasma concentrations of all nine essential amino acids (EAAs) were lower in the AD-convert group. Among EAAs, three branched-chain amino acids (BCAAs), valine, leucine and isoleucine, and histidine (His) exhibited significant differences even in the logistic regression model adjusted for potential confounding factors such as age, sex, body mass index (BMI), and APOE ε4 possession (p ConclusionThe PFAA profile, especially decreases in BCAAs and His, is associated with development of AD in MCI participants, and the difference was larger in the APOE ε4-negative population, suggesting that the PFAA profile is an independent risk indicator for AD development. Measuring the PFAA profile may have importance in assessing the risk of AD conversion in the MCI population, possibly reflecting nutritional status.Clinical trial registration[https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000025322], identifier [UMIN000021965].</p

    Outcomes in Newly Diagnosed Atrial Fibrillation and History of Acute Coronary Syndromes: Insights from GARFIELD-AF

    No full text
    BACKGROUND: Many patients with atrial fibrillation have concomitant coronary artery disease with or without acute coronary syndromes and are in need of additional antithrombotic therapy. There are few data on the long-term clinical outcome of atrial fibrillation patients with a history of acute coronary syndrome. This is a 2-year study of atrial fibrillation patients with or without a history of acute coronary syndromes
    corecore