21 research outputs found

    The South Swedish Dome : a key structure for identification of peneplains and conclusions on Phanerozoic tectonics of an ancient shield

    No full text
    The relationships between different denudation surfaces/peneplains formed across crystalline basement rocks give valuable information to the tectonic development of ancient shields. The denudation surfaces can be identified by the aid of their landforms, tilt and remnant weathering mantles in relation to cover rocks. Three types of denudation surfaces are identified across south Sweden (1) a tilted flat plain, (2) a tilted hilly surface with relative relief below 150 m and (3) stepped horizontal plains with residual hills. All three types of denudation surfaces are peneplains, denudation surfaces graded to specific base levels. The re-exposed parts of the inclined flat sub-Cambrian peneplain (SCP) extend as a landscape feature from below cover rocks in the north and east and reaches up on the highest summits of the South Swedish Uplands. The SCP (the exact unconformity) is encountered again below Cambrian covers outside the west coast. Thus south Sweden is a geological dome, the South Swedish Dome (SSD), in relation to the Cambrian cover. The southern and western low flanks of the exposed part of the dome are instead characterized by a hilly peneplain, the inclined sub-Cretaceous denudation surface, with remnants of thick, kaolinitic, clayey saprolites. This sub-Cretaceous peneplain is cut off at a distinct level in the south and west by the almost horizontal South Småland Peneplain, a never covered, epigene, peneplain. The uplift history of the SSD aids to the understanding on the development of late Tertiary drainage systems of the Baltic Basin by the Eridano River

    Landscape evolution in Martian mid-latitude regions: Insights from analogous periglacial landforms in Svalbard

    Get PDF
    Periglacial landforms on Spitsbergen (Svalbard, Norway) are morphologically similar to landforms on Mars that are probably related to the past and/or present existence of ice at or near the surface. Many of these landforms, such as gullies, debris-flow fans, polygonal terrain, fractured mounds and rock-glacier-like features, are observed in close spatial proximity in mid-latitude craters on Mars. On Svalbard, analogous landforms occur in strikingly similar proximity, which makes them useful study cases to infer the spatial and chronological evolution of Martian coldclimate surface processes. The analysis of the morphological inventory of analogous landforms on Svalbard and Mars allows the processes operating on Mars to be constrained. Different qualitative scenarios of landscape evolution on Mars help to better understand the action of periglacial processes on Mars in the recent past
    corecore