48 research outputs found

    Advances in non-invasive biosensing measures to monitor wound healing progression

    Get PDF
    Impaired wound healing is a significant financial and medical burden. The synthesis and deposition of extracellular matrix (ECM) in a new wound is a dynamic process that is constantly changing and adapting to the biochemical and biomechanical signaling from the extracellular microenvironments of the wound. This drives either a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM deposition, structure, and composition lead to impaired healing in diseased states, such as in diabetes. Valid measures of the principal determinants of successful ECM deposition and wound healing include lack of bacterial contamination, good tissue perfusion, and reduced mechanical injury and strain. These measures are used by wound-care providers to intervene upon the healing wound to steer healing toward a more functional phenotype with improved structural integrity and healing outcomes and to prevent adverse wound developments. In this review, we discuss bioengineering advances in 1) non-invasive detection of biologic and physiologic factors of the healing wound, 2) visualizing and modeling the ECM, and 3) computational tools that efficiently evaluate the complex data acquired from the wounds based on basic science, preclinical, translational and clinical studies, that would allow us to prognosticate healing outcomes and intervene effectively. We focus on bioelectronics and biologic interfaces of the sensors and actuators for real time biosensing and actuation of the tissues. We also discuss high-resolution, advanced imaging techniques, which go beyond traditional confocal and fluorescence microscopy to visualize microscopic details of the composition of the wound matrix, linearity of collagen, and live tracking of components within the wound microenvironment. Computational modeling of the wound matrix, including partial differential equation datasets as well as machine learning models that can serve as powerful tools for physicians to guide their decision-making process are discussed

    Case Scenario: Anesthesia for Maternal-Fetal Surgery

    No full text

    GLP-2 Delays But Does Not Prevent the Onset of Necrotizing Enterocolitis in Preterm Pigs

    No full text
    OBJECTIVES: Necrotizing enterocolitis (NEC) is complex disease thought to occur as a result of an immaturity of the gastrointestinal tract of preterm infants. Intestinal dysfunction induced by total parental nutrition (TPN) may increase the risk for NEC upon introduction of enteral feeding. We hypothesized that the intestinal trophic and anti-inflammatory actions previously ascribed to the gut hormone, glucagon-like peptide-2 (GLP-2), would reduce the incidence of NEC when given in combination with TPN in preterm piglets. METHODS: Preterm, newborn piglets were nourished by TPN and infused continuously with either human GLP-2 (100 μg · kg(−1) · day(−1)) or control saline for 2 days (n = 12/group). On day 3, TPN was discontinued and pigs were given orogastric formula feeding every 3 hours, and continued GLP-2 or control treatment until the onset of clinical signs of NEC for an additional 96 hours and tissue was collected for molecular and histological endpoints. RESULTS: GLP-2 treatment delayed the onset of NEC but was unable to prevent a high NEC incidence (~70%) and severity that occurred in both groups. GLP-2–treated pigs had less histological injury and increased proximal intestinal weight and mucosal villus height, but not crypt depth or Ki-67–positive cells. Inflammatory markers of intestinal myeloperoxidase were unchanged and serum amyloid A levels were higher in GLP-2–treated pigs. CONCLUSIONS: GLP-2 did not prevent NEC and a proinflammatory response despite some reduction in mucosal injury and increased trophic effect

    Advances in non-invasive biosensing measures to monitor wound healing progression

    No full text
    Impaired wound healing is a significant financial and medical burden. The synthesis and deposition of extracellular matrix (ECM) in a new wound is a dynamic process that is constantly changing and adapting to the biochemical and biomechanical signaling from the extracellular microenvironments of the wound. This drives either a regenerative or fibrotic and scar-forming healing outcome. Disruptions in ECM deposition, structure, and composition lead to impaired healing in diseased states, such as in diabetes. Valid measures of the principal determinants of successful ECM deposition and wound healing include lack of bacterial contamination, good tissue perfusion, and reduced mechanical injury and strain. These measures are used by wound-care providers to intervene upon the healing wound to steer healing toward a more functional phenotype with improved structural integrity and healing outcomes and to prevent adverse wound developments. In this review, we discuss bioengineering advances in 1) non-invasive detection of biologic and physiologic factors of the healing wound, 2) visualizing and modeling the ECM, and 3) computational tools that efficiently evaluate the complex data acquired from the wounds based on basic science, preclinical, translational and clinical studies, that would allow us to prognosticate healing outcomes and intervene effectively. We focus on bioelectronics and biologic interfaces of the sensors and actuators for real time biosensing and actuation of the tissues. We also discuss high-resolution, advanced imaging techniques, which go beyond traditional confocal and fluorescence microscopy to visualize microscopic details of the composition of the wound matrix, linearity of collagen, and live tracking of components within the wound microenvironment. Computational modeling of the wound matrix, including partial differential equation datasets as well as machine learning models that can serve as powerful tools for physicians to guide their decision-making process are discussed

    Low Abdominal NIRS Values and Elevated Plasma Intestinal Fatty Acid-Binding Protein in a Premature Piglet Model of Necrotizing Enterocolitis

    No full text
    <div><p>To identify early markers of necrotizing enterocolitis (NEC), we hypothesized that continuous abdominal near-infrared spectroscopy (A-NIRS) measurement of splanchnic tissue oxygen saturation and intermittent plasma intestinal fatty-acid binding protein (<i>p</i>I-FABP) measured every 6 hours can detect NEC prior to onset of clinical symptoms. Premature piglets received parenteral nutrition for 48-hours after delivery, followed by enteral feeds every three hours until death or euthanasia at 96-hours. Continuous A-NIRS, systemic oxygen saturation (SpO<sub>2</sub>), and heart rate were measured while monitoring for clinical signs of NEC. Blood samples obtained at 6-hour intervals were used to determine <i>p</i>I-FABP levels by ELISA. Piglets were classified as fulminant-NEC (f-NEC), non-fulminant-NEC (nf-NEC) and No-NEC according to severity of clinical and histologic features. Of 38 piglets, 37% (n=14) developed nf-NEC, 18% (n=7) developed f-NEC and 45% (n=17) had No-NEC. There were significant differences in baseline heart rate (p=0.008), SpO<sub>2</sub> (p<0.001) and A-NIRS (p<0.001) among the three groups. A-NIRS values of NEC piglets remained lower throughout the study with mean for f-NEC of 69±3.8%, 71.9±4.04% for nf-NEC, and 78.4±1.8% for No-NEC piglets (p<0.001). A-NIRS <75% predicted NEC with 97% sensitivity and 97% specificity. NEC piglets demonstrated greater variability from baseline in A-NIRS than healthy piglets (10.1% vs. 6.3%; p=0.04). Mean pI-FABP levels were higher in animals that developed NEC compared to No-NEC piglets (0.66 vs. 0.09 ng/mL;p<0.001). In f-NEC piglets, pI-FABP increased precipitously after feeds (0.04 to 1.87 ng/mL;p<0.001). <i>p</i>I-FABP levels increased in parallel with disease progression and a value >0.25ng/mL identified animals with NEC (68% sensitivity and 90% specificity). NIRS is a real-time, non-invasive tool that can serve as a diagnostic modality for NEC. In premature piglets, low A-NIRS in the early neonatal period and increased variability during initial feeds are highly predictive of NEC, which is then confirmed by rising plasma I-FABP levels. These modalities may help identify neonates with NEC prior to clinical manifestations of disease.</p></div

    Baseline measurements of piglets by NEC severity.

    No full text
    <p>NEC—necrotizing enterocolitis; HR—heart rate; bpm—beats per minute; SpO2—oxygen saturation; A-NIRS—abdominal near infrared spectroscopy.</p><p>Baseline measurements of piglets by NEC severity.</p

    Continuous Abdominal NIRS-Tissue Oxygen Content of Hemoglobin (StO<sub>2</sub>) Measurements.

    No full text
    <p>Abdominal NIRS data stratified by NEC severity groups demonstrated that f-NEC piglets had significantly lower A-NIRS values than both the nf-NEC and No-NEC groups at baseline, and then both NEC groups maintained significantly lower A-NIRS values than No-NEC piglets throughout the majority of the study. <i>‡ = p<0</i>.<i>05</i>, <i>compared to Non-Fulminant NEC; * = p<0</i>.<i>05</i>, <i>compared to No-NEC</i>.</p
    corecore