650 research outputs found

    CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro

    Full text link
    The direct relationship between the aging process and the incidence and prevalence of both benign prostatic hyperplasia (BPH) and prostate cancer (PCa) implies that certain risk factors associated with the development of both diseases increase with the aging process. In particular, both diseases share an overly proliferative phenotype, suggesting that mechanisms that normally act to suppress cellular proliferation are disrupted or rendered dysfunctional as a consequence of the aging process. We propose that one such mechanism involves changes in the prostate microenvironment, which ‘evolves’ during the aging process and disrupts paracrine interactions between epithelial and associated stromal fibroblasts. We show that stromal fibroblasts isolated from the prostates of men 63–81 years of age at the time of surgery express and secrete higher levels of the CXCL12 chemokine compared with those isolated from younger men, and stimulate CXCR4-mediated signaling pathways that induce cellular proliferation. These studies represent an important first step towards a mechanistic elucidation of the role of aging in the etiology of benign and malignant prostatic diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73356/1/j.1474-9726.2005.00173.x.pd

    Offshore Topside Rotating Packed Bed as Process Intensified Alternative for Natural Gas Sweetening and Dehydration

    Get PDF
    This work is aimed at investigating the benefits of replacing conventional process unit operations with process intensified ones in offshore applications. This ensures that better use is made of raw materials, lower energy consumption and a reduced plant volume was achieved. Specifically, a rotating packed bed technology has been used for gas dehydration and sweetening. To achieve the aim of this study, a process intensification approach is used to redesign mature absorption processes to more compact and efficient one. Process simulation using Aspen Hysys was carried out for Triethylene glycol dehydration and monoethanolamine sweetening. More than 36-fold absorption unit size reduction was achieved thereby effecting large decrease in capital and operating costs compared to the conventional packed columns currently utilized in the offshore oil and gas industry. The process intensified technologies therefore can be deployed for offshore applications where space and size considerations are of utmost importance

    Carcinoma-associated fibroblasts stimulate tumor progression of initiated human epithelium

    Get PDF
    The present study demonstrates that fibroblasts associated with carcinomas stimulate tumor progression of initiated nontumorigenic epithelial cells both in an in vivo tissue recombination system and in an in vitro coculture system. Human prostatic carcinoma-associated fibroblasts grown with initiated human prostatic epithelial cells dramatically stimulated growth and altered histology of the epithelial population. This effect was not detected when normal prostatic fibroblasts were grown with the initiated epithelial cells under the same experimental conditions. In contrast, carcinoma-associated fibroblasts did not affect growth of normal human prostatic epithelial cells under identical conditions. From these data, we conclude that in this human prostate cancer model, carcinoma-associated fibroblasts stimulate progression of tumorigenesis. Thus, carcinoma-associated fibroblasts can direct tumor progression of an initiated prostate epithelial cell

    c-Fos as a Proapoptotic Agent in TRAIL-Induced Apoptosis in Prostate Cancer Cells

    Get PDF
    Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL)/Apo-2L promotes apoptosis in cancer cells while sparing normal cells. Although many cancers are sensitive to TRAIL-induced apoptosis, some evade the proapoptotic effects of TRAIL. Therefore, differentiating molecular mechanisms that distinguish between TRAIL-sensitive and TRAIL-resistant tumors are essential for effective cancer therapies. Here, we show that c-Fos functions as a proapoptotic agent by repressing the antiapoptotic molecule c-FLIP(L). c-Fos binds the c-FLIP(L) promoter, represses its transcriptional activity, and reduces c-FLIP(L) mRNA and protein levels. Therefore, c-Fos is a key regulator of c-FLIP(L), and activation of c-Fos determines whether a cancer cell will undergo cell death after TRAIL treatment. Strategies to activate c-Fos or inhibit c-FLIP(L) may potentiate TRAILbased proapoptotic therapies

    Methylation of SRD5A2 promoter predicts a better outcome for castration-resistant prostate cancer patients undergoing androgen deprivation therapy

    Get PDF
    PURPOSE: To determine whether SRD5A2 promoter methylation is associated with cancer progression during androgen deprivation therapy (ADT) in CRPC. PATIENTS AND METHODS: In a Local CRPC cohort, 42 prostatic specimens were collected from patients who were diagnosed as CRPC and underwent transurethral resection of the prostate (TURP) at Massachusetts General Hospital (MGH). In a metastatic CRPC (Met CRPC) cohort, 12 metastatic biopsies were collected from CRPC patients who would be treated with abiraterone plus dutasteride (Clinical Trial NCT01393730). As controls, 36 benign prostatic specimens were collected from patients undergoing prostate reduction surgery for symptoms of bladder outlet obstruction secondary to benign prostatic hyperplasia (BPH). The methylation status of cytosine-phosphate-guanine (CpG) site(s) at SRD5A2 promoter regions was tested. RESULTS: Compared with benign prostatic tissue, CRPC samples demonstrated higher SRD5A2 methylation in the whole promoter region (Local CRPC cohort: P \u3c 0.001; Met CRPC cohort: P \u3c 0.05). In Local CRPC cohort, a higher ratio of methylation was correlated with better OS (R2 = 0.33, P = 0.013). Hypermethylation of specific regions (nucleotides -434 to -4 [CpG# -39 to CpG# -2]) was associated with a better OS (11.3+/-5.8 vs 6.4+/-4.4 years, P = 0.001) and PFS (8.4+/-5.4 vs 4.5+/-3.9 years, P = 0.003) with cutoff value of 37.9%. Multivariate analysis showed that SRD5A2 methylation was associated with OS independently (whole promoter region: P = 0.035; specific region: P = 0.02). CONCLUSION: Our study demonstrate that SRD5A2 methylation in promoter regions, specifically at CpG# -39 to -2, is significantly associated with better survival for CRPC patients treated with ADT. Recognition of epigenetic modifications of SRD5A2 may affect the choices and sequence of available therapies for management of CRPC

    Transperitoneal laparoscopic right radical nephrectomy for renal cell carcinoma and end-stage renal disease: a case report

    Get PDF
    Nephron-sparing surgery (partial nephrectomy) results are similar to those of radical nephrectomy for small (<4 cm) renal tumors. However, in patients with end-stage renal disease, radical nephrectomy emerges as a more efficient treatment for localized renal cell cancer. Laparoscopic radical nephrectomy (LRN) increasingly is being performed. The objective of the present study was to present a case of a patient under hemodialysis who was submitted to LRN for a small renal mass and discuss the current issues concerning this approach. It appears that radical nephrectomy should be the standard treatment in dialysis patients even for small tumors. The laparoscopic technique is associated with acceptable cancer-specific survival and recurrence rate along with shorter hospital stay, less postoperative pain and earlier return to normal activities

    Metformin Decreases Glucose Oxidation and Increases the Dependency of Prostate Cancer Cells on Reductive Glutamine Metabolism

    Get PDF
    Metformin inhibits cancer cell proliferation, and epidemiology studies suggest an association with increased survival in patients with cancer taking metformin; however, the mechanism by which metformin improves cancer outcomes remains controversial. To explore how metformin might directly affect cancer cells, we analyzed how metformin altered the metabolism of prostate cancer cells and tumors. We found that metformin decreased glucose oxidation and increased dependency on reductive glutamine metabolism in both cancer cell lines and in a mouse model of prostate cancer. Inhibition of glutamine anaplerosis in the presence of metformin further attenuated proliferation, whereas increasing glutamine metabolism rescued the proliferative defect induced by metformin. These data suggest that interfering with glutamine may synergize with metformin to improve outcomes in patients with prostate cancer.German Science Foundation (Grant FE1185)National Institutes of Health (U.S.)Glenn Foundation for Medical ResearchNational Institutes of Health (U.S.) (Grant 5-P50-090381-09)National Institutes of Health (U.S.) (Grant 5-P30-CA14051-39)Burroughs Wellcome FundSmith Family FoundationDamon Runyon Cancer Research FoundationNational Institutes of Health (U.S.) (Grant 1R01DK075850-01)National Institutes of Health (U.S.) (Grant 1R01CA160458-01A1
    corecore