3,318 research outputs found
On monotone circuits with local oracles and clique lower bounds
We investigate monotone circuits with local oracles [K., 2016], i.e.,
circuits containing additional inputs that can perform
unstructured computations on the input string . Let be
the locality of the circuit, a parameter that bounds the combined strength of
the oracle functions , and
be the set of -cliques and the set of complete -partite graphs,
respectively (similarly to [Razborov, 1985]). Our results can be informally
stated as follows.
1. For an appropriate extension of depth- monotone circuits with local
oracles, we show that the size of the smallest circuits separating
(triangles) and (complete bipartite graphs) undergoes two phase
transitions according to .
2. For , arbitrary depth, and , we
prove that the monotone circuit size complexity of separating the sets
and is , under a certain restrictive
assumption on the local oracle gates.
The second result, which concerns monotone circuits with restricted oracles,
extends and provides a matching upper bound for the exponential lower bounds on
the monotone circuit size complexity of -clique obtained by Alon and Boppana
(1987).Comment: Updated acknowledgements and funding informatio
Consistency of circuit lower bounds with bounded theories
Proving that there are problems in that require
boolean circuits of super-linear size is a major frontier in complexity theory.
While such lower bounds are known for larger complexity classes, existing
results only show that the corresponding problems are hard on infinitely many
input lengths. For instance, proving almost-everywhere circuit lower bounds is
open even for problems in . Giving the notorious difficulty of
proving lower bounds that hold for all large input lengths, we ask the
following question: Can we show that a large set of techniques cannot prove
that is easy infinitely often? Motivated by this and related
questions about the interaction between mathematical proofs and computations,
we investigate circuit complexity from the perspective of logic.
Among other results, we prove that for any parameter it is
consistent with theory that computational class , where is one of
the pairs: and , and , and
. In other words, these theories cannot establish
infinitely often circuit upper bounds for the corresponding problems. This is
of interest because the weaker theory already formalizes
sophisticated arguments, such as a proof of the PCP Theorem. These consistency
statements are unconditional and improve on earlier theorems of [KO17] and
[BM18] on the consistency of lower bounds with
Randomness and intractability in Kolmogorov complexity
We introduce randomized time-bounded Kolmogorov complexity (rKt), a natural extension of Levin's notion [Leonid A. Levin, 1984] of Kolmogorov complexity. A string w of low rKt complexity can be decompressed from a short representation via a time-bounded algorithm that outputs w with high probability. This complexity measure gives rise to a decision problem over strings: MrKtP (The Minimum rKt Problem). We explore ideas from pseudorandomness to prove that MrKtP and its variants cannot be solved in randomized quasi-polynomial time. This exhibits a natural string compression problem that is provably intractable, even for randomized computations. Our techniques also imply that there is no n^{1 - epsilon}-approximate algorithm for MrKtP running in randomized quasi-polynomial time. Complementing this lower bound, we observe connections between rKt, the power of randomness in computing, and circuit complexity. In particular, we present the first hardness magnification theorem for a natural problem that is unconditionally hard against a strong model of computation
Erd\H{o}s-Ko-Rado for random hypergraphs: asymptotics and stability
We investigate the asymptotic version of the Erd\H{o}s-Ko-Rado theorem for
the random -uniform hypergraph . For , let and . We show that with probability
tending to 1 as , the largest intersecting subhypergraph of
has size , for any . This lower bound on is
asymptotically best possible for . For this range of and ,
we are able to show stability as well.
A different behavior occurs when . In this case, the lower bound on
is almost optimal. Further, for the small interval , the largest intersecting subhypergraph of
has size , provided that .
Together with previous work of Balogh, Bohman and Mubayi, these results
settle the asymptotic size of the largest intersecting family in
, for essentially all values of and
Near-optimal small-depth lower bounds for small distance connectivity
We show that any depth- circuit for determining whether an -node graph
has an -to- path of length at most must have size
. The previous best circuit size lower bounds for this
problem were (due to Beame, Impagliazzo, and Pitassi
[BIP98]) and (following from a recent formula size
lower bound of Rossman [Ros14]). Our lower bound is quite close to optimal,
since a simple construction gives depth- circuits of size
for this problem (and strengthening our bound even to
would require proving that undirected connectivity is not in )
Our proof is by reduction to a new lower bound on the size of small-depth
circuits computing a skewed variant of the "Sipser functions" that have played
an important role in classical circuit lower bounds [Sip83, Yao85, H{\aa}s86].
A key ingredient in our proof of the required lower bound for these Sipser-like
functions is the use of \emph{random projections}, an extension of random
restrictions which were recently employed in [RST15]. Random projections allow
us to obtain sharper quantitative bounds while employing simpler arguments,
both conceptually and technically, than in the previous works [Ajt89, BPU92,
BIP98, Ros14]
Conspiracies Between Learning Algorithms, Circuit Lower Bounds, and Pseudorandomness
We prove several results giving new and stronger connections between learning theory, circuit complexity and pseudorandomness. Let C be any typical class of Boolean circuits, and C[s(n)] denote n-variable C-circuits of size <= s(n). We show:
Learning Speedups: If C[s(n)] admits a randomized weak learning algorithm under the uniform distribution with membership queries that runs in time 2^n/n^{omega(1)}, then for every k >= 1 and epsilon > 0 the class C[n^k] can be learned to high accuracy in time O(2^{n^epsilon}). There is epsilon > 0 such that C[2^{n^{epsilon}}] can be learned in time 2^n/n^{omega(1)} if and only if C[poly(n)] can be learned in time 2^{(log(n))^{O(1)}}.
Equivalences between Learning Models: We use learning speedups to obtain equivalences between various randomized learning and compression models, including sub-exponential time learning with membership queries, sub-exponential time learning with membership and equivalence queries, probabilistic function compression and probabilistic average-case function compression.
A Dichotomy between Learnability and Pseudorandomness: In the non-uniform setting, there is non-trivial learning for C[poly(n)] if and only if there are no exponentially secure pseudorandom functions computable in C[poly(n)].
Lower Bounds from Nontrivial Learning: If for each k >= 1, (depth-d)-C[n^k] admits a randomized weak learning algorithm with membership queries under the uniform distribution that runs in time 2^n/n^{omega(1)}, then for each k >= 1, BPE is not contained in (depth-d)-C[n^k]. If for some epsilon > 0 there are P-natural proofs useful against C[2^{n^{epsilon}}], then ZPEXP is not contained in C[poly(n)].
Karp-Lipton Theorems for Probabilistic Classes: If there is a k > 0 such that BPE is contained in i.o.Circuit[n^k], then BPEXP is contained in i.o.EXP/O(log(n)). If ZPEXP is contained in i.o.Circuit[2^{n/3}], then ZPEXP is contained in i.o.ESUBEXP.
Hardness Results for MCSP: All functions in non-uniform NC^1 reduce to the Minimum Circuit Size Problem via truth-table reductions computable by TC^0 circuits. In particular, if MCSP is in TC^0 then NC^1 = TC^0
Learning circuits with few negations
Monotone Boolean functions, and the monotone Boolean circuits that compute
them, have been intensively studied in complexity theory. In this paper we
study the structure of Boolean functions in terms of the minimum number of
negations in any circuit computing them, a complexity measure that interpolates
between monotone functions and the class of all functions. We study this
generalization of monotonicity from the vantage point of learning theory,
giving near-matching upper and lower bounds on the uniform-distribution
learnability of circuits in terms of the number of negations they contain. Our
upper bounds are based on a new structural characterization of negation-limited
circuits that extends a classical result of A. A. Markov. Our lower bounds,
which employ Fourier-analytic tools from hardness amplification, give new
results even for circuits with no negations (i.e. monotone functions)
- …