3,318 research outputs found

    On monotone circuits with local oracles and clique lower bounds

    Get PDF
    We investigate monotone circuits with local oracles [K., 2016], i.e., circuits containing additional inputs yi=yi(x)y_i = y_i(\vec{x}) that can perform unstructured computations on the input string x\vec{x}. Let μ[0,1]\mu \in [0,1] be the locality of the circuit, a parameter that bounds the combined strength of the oracle functions yi(x)y_i(\vec{x}), and Un,k,Vn,k{0,1}mU_{n,k}, V_{n,k} \subseteq \{0,1\}^m be the set of kk-cliques and the set of complete (k1)(k-1)-partite graphs, respectively (similarly to [Razborov, 1985]). Our results can be informally stated as follows. 1. For an appropriate extension of depth-22 monotone circuits with local oracles, we show that the size of the smallest circuits separating Un,3U_{n,3} (triangles) and Vn,3V_{n,3} (complete bipartite graphs) undergoes two phase transitions according to μ\mu. 2. For 5k(n)n1/45 \leq k(n) \leq n^{1/4}, arbitrary depth, and μ1/50\mu \leq 1/50, we prove that the monotone circuit size complexity of separating the sets Un,kU_{n,k} and Vn,kV_{n,k} is nΘ(k)n^{\Theta(\sqrt{k})}, under a certain restrictive assumption on the local oracle gates. The second result, which concerns monotone circuits with restricted oracles, extends and provides a matching upper bound for the exponential lower bounds on the monotone circuit size complexity of kk-clique obtained by Alon and Boppana (1987).Comment: Updated acknowledgements and funding informatio

    Consistency of circuit lower bounds with bounded theories

    Get PDF
    Proving that there are problems in PNP\mathsf{P}^\mathsf{NP} that require boolean circuits of super-linear size is a major frontier in complexity theory. While such lower bounds are known for larger complexity classes, existing results only show that the corresponding problems are hard on infinitely many input lengths. For instance, proving almost-everywhere circuit lower bounds is open even for problems in MAEXP\mathsf{MAEXP}. Giving the notorious difficulty of proving lower bounds that hold for all large input lengths, we ask the following question: Can we show that a large set of techniques cannot prove that NP\mathsf{NP} is easy infinitely often? Motivated by this and related questions about the interaction between mathematical proofs and computations, we investigate circuit complexity from the perspective of logic. Among other results, we prove that for any parameter k1k \geq 1 it is consistent with theory TT that computational class C⊈i.o.SIZE(nk){\mathcal C} \not \subseteq \textit{i.o.}\mathrm{SIZE}(n^k), where (T,C)(T, \mathcal{C}) is one of the pairs: T=T21T = \mathsf{T}^1_2 and C=PNP{\mathcal C} = \mathsf{P}^\mathsf{NP}, T=S21T = \mathsf{S}^1_2 and C=NP{\mathcal C} = \mathsf{NP}, T=PVT = \mathsf{PV} and C=P{\mathcal C} = \mathsf{P}. In other words, these theories cannot establish infinitely often circuit upper bounds for the corresponding problems. This is of interest because the weaker theory PV\mathsf{PV} already formalizes sophisticated arguments, such as a proof of the PCP Theorem. These consistency statements are unconditional and improve on earlier theorems of [KO17] and [BM18] on the consistency of lower bounds with PV\mathsf{PV}

    Randomness and intractability in Kolmogorov complexity

    Get PDF
    We introduce randomized time-bounded Kolmogorov complexity (rKt), a natural extension of Levin's notion [Leonid A. Levin, 1984] of Kolmogorov complexity. A string w of low rKt complexity can be decompressed from a short representation via a time-bounded algorithm that outputs w with high probability. This complexity measure gives rise to a decision problem over strings: MrKtP (The Minimum rKt Problem). We explore ideas from pseudorandomness to prove that MrKtP and its variants cannot be solved in randomized quasi-polynomial time. This exhibits a natural string compression problem that is provably intractable, even for randomized computations. Our techniques also imply that there is no n^{1 - epsilon}-approximate algorithm for MrKtP running in randomized quasi-polynomial time. Complementing this lower bound, we observe connections between rKt, the power of randomness in computing, and circuit complexity. In particular, we present the first hardness magnification theorem for a natural problem that is unconditionally hard against a strong model of computation

    Erd\H{o}s-Ko-Rado for random hypergraphs: asymptotics and stability

    Get PDF
    We investigate the asymptotic version of the Erd\H{o}s-Ko-Rado theorem for the random kk-uniform hypergraph Hk(n,p)\mathcal{H}^k(n,p). For 2k(n)n/22 \leq k(n) \leq n/2, let N=(nk)N=\binom{n}k and D=(nkk)D=\binom{n-k}k. We show that with probability tending to 1 as nn\to\infty, the largest intersecting subhypergraph of Hk(n,p)\mathcal{H}^k(n,p) has size (1+o(1))pknN(1+o(1))p\frac kn N, for any pnkln2 ⁣(nk)D1p\gg \frac nk\ln^2\!\left(\frac nk\right)D^{-1}. This lower bound on pp is asymptotically best possible for k=Θ(n)k=\Theta(n). For this range of kk and pp, we are able to show stability as well. A different behavior occurs when k=o(n)k = o(n). In this case, the lower bound on pp is almost optimal. Further, for the small interval D1p(n/k)1εD1D^{-1}\ll p \leq (n/k)^{1-\varepsilon}D^{-1}, the largest intersecting subhypergraph of Hk(n,p)\mathcal{H}^k(n,p) has size Θ(ln(pD)ND1)\Theta(\ln (pD)N D^{-1}), provided that knlnnk \gg \sqrt{n \ln n}. Together with previous work of Balogh, Bohman and Mubayi, these results settle the asymptotic size of the largest intersecting family in Hk(n,p)\mathcal{H}^k(n,p), for essentially all values of pp and kk

    Near-optimal small-depth lower bounds for small distance connectivity

    Get PDF
    We show that any depth-dd circuit for determining whether an nn-node graph has an ss-to-tt path of length at most kk must have size nΩ(k1/d/d)n^{\Omega(k^{1/d}/d)}. The previous best circuit size lower bounds for this problem were nkexp(O(d))n^{k^{\exp(-O(d))}} (due to Beame, Impagliazzo, and Pitassi [BIP98]) and nΩ((logk)/d)n^{\Omega((\log k)/d)} (following from a recent formula size lower bound of Rossman [Ros14]). Our lower bound is quite close to optimal, since a simple construction gives depth-dd circuits of size nO(k2/d)n^{O(k^{2/d})} for this problem (and strengthening our bound even to nkΩ(1/d)n^{k^{\Omega(1/d)}} would require proving that undirected connectivity is not in NC1.\mathsf{NC^1}.) Our proof is by reduction to a new lower bound on the size of small-depth circuits computing a skewed variant of the "Sipser functions" that have played an important role in classical circuit lower bounds [Sip83, Yao85, H{\aa}s86]. A key ingredient in our proof of the required lower bound for these Sipser-like functions is the use of \emph{random projections}, an extension of random restrictions which were recently employed in [RST15]. Random projections allow us to obtain sharper quantitative bounds while employing simpler arguments, both conceptually and technically, than in the previous works [Ajt89, BPU92, BIP98, Ros14]

    Conspiracies Between Learning Algorithms, Circuit Lower Bounds, and Pseudorandomness

    Get PDF
    We prove several results giving new and stronger connections between learning theory, circuit complexity and pseudorandomness. Let C be any typical class of Boolean circuits, and C[s(n)] denote n-variable C-circuits of size <= s(n). We show: Learning Speedups: If C[s(n)] admits a randomized weak learning algorithm under the uniform distribution with membership queries that runs in time 2^n/n^{omega(1)}, then for every k >= 1 and epsilon > 0 the class C[n^k] can be learned to high accuracy in time O(2^{n^epsilon}). There is epsilon > 0 such that C[2^{n^{epsilon}}] can be learned in time 2^n/n^{omega(1)} if and only if C[poly(n)] can be learned in time 2^{(log(n))^{O(1)}}. Equivalences between Learning Models: We use learning speedups to obtain equivalences between various randomized learning and compression models, including sub-exponential time learning with membership queries, sub-exponential time learning with membership and equivalence queries, probabilistic function compression and probabilistic average-case function compression. A Dichotomy between Learnability and Pseudorandomness: In the non-uniform setting, there is non-trivial learning for C[poly(n)] if and only if there are no exponentially secure pseudorandom functions computable in C[poly(n)]. Lower Bounds from Nontrivial Learning: If for each k >= 1, (depth-d)-C[n^k] admits a randomized weak learning algorithm with membership queries under the uniform distribution that runs in time 2^n/n^{omega(1)}, then for each k >= 1, BPE is not contained in (depth-d)-C[n^k]. If for some epsilon > 0 there are P-natural proofs useful against C[2^{n^{epsilon}}], then ZPEXP is not contained in C[poly(n)]. Karp-Lipton Theorems for Probabilistic Classes: If there is a k > 0 such that BPE is contained in i.o.Circuit[n^k], then BPEXP is contained in i.o.EXP/O(log(n)). If ZPEXP is contained in i.o.Circuit[2^{n/3}], then ZPEXP is contained in i.o.ESUBEXP. Hardness Results for MCSP: All functions in non-uniform NC^1 reduce to the Minimum Circuit Size Problem via truth-table reductions computable by TC^0 circuits. In particular, if MCSP is in TC^0 then NC^1 = TC^0

    Constant-Depth Circuits vs. Monotone Circuits

    Get PDF

    Learning circuits with few negations

    Get PDF
    Monotone Boolean functions, and the monotone Boolean circuits that compute them, have been intensively studied in complexity theory. In this paper we study the structure of Boolean functions in terms of the minimum number of negations in any circuit computing them, a complexity measure that interpolates between monotone functions and the class of all functions. We study this generalization of monotonicity from the vantage point of learning theory, giving near-matching upper and lower bounds on the uniform-distribution learnability of circuits in terms of the number of negations they contain. Our upper bounds are based on a new structural characterization of negation-limited circuits that extends a classical result of A. A. Markov. Our lower bounds, which employ Fourier-analytic tools from hardness amplification, give new results even for circuits with no negations (i.e. monotone functions)
    corecore