27 research outputs found

    Development of novel molecularly imprinted solid-phase microextraction fibers and their application for the determination of antibiotic drugs in biological samples by SPME-LC/MSn

    Get PDF
    Novel molecularly imprinted polymer (MIP)-coated fibers for solid-phase microextraction (SPME) fibers were prepared by using linezolid as the template molecule. The characteristics and application of these fibers were investigated. The polypyrrole, polythiophene, and poly(3-methylthiophene) coatings were prepared in the electrochemical polymerization way. The molecularly imprinted SPME coatings display a high selectivity toward linezolid. Molecularly imprinted coatings showed a stable and reproducible response without any influence of interferents commonly existing in biological samples. High-performance liquid chromatography with spectroscopic UV and mass spectrometry (MS) detectors were used for the determination of selected antibiotic drugs (linezolid, daptomycin, amoxicillin). The isolation and preconcentration of selected antibiotic drugs from new types of biological samples (acellular and protein-free simulated body fluid) and human plasma samples were performed. The SPME MIP-coated fibers are suitable for the selective extraction of antibiotic drugs in biological samples

    Matrix Metalloproteinase Gene Delivery for Liver Fibrosis

    Get PDF
    The resolution of advanced liver fibrosis has been recently recognized to be possible, if the causative stimuli are successfully removed. However, whether complete resolution from cirrhosis, the end stage of liver fibrosis, can be achieved is still questionable. Delivery of interstitial collagenases, such as matrix metalloproteinase (MMP)-1, in the liver could be an attractive strategy to treat advanced hepatic fibrosis from the view point that the imbalance between too few interstitial collagenases and too many of their inhibitors is the main obstacle to the resolution from fibrosis. Remodeling of hepatic extracellular matrix by delivered interstitial collagenases also facilitates the disappearance of activated hepatic stellate cells, the main matrix-producing cells in the liver, and promotes the proliferation of hepatocytes. This review will focus on the impact of the gene delivery of MMPs for the treatment of advanced liver fibrosis while discussing other current therapeutic strategies for liver fibrosis, and on the need for the development of a safe and effective delivery system of MMPs

    A Large Gene Network in Immature Erythroid Cells Is Controlled by the Myeloid and B Cell Transcriptional Regulator PU.1

    Get PDF
    PU.1 is a hematopoietic transcription factor that is required for the development of myeloid and B cells. PU.1 is also expressed in erythroid progenitors, where it blocks erythroid differentiation by binding to and inhibiting the main erythroid promoting factor, GATA-1. However, other mechanisms by which PU.1 affects the fate of erythroid progenitors have not been thoroughly explored. Here, we used ChIP-Seq analysis for PU.1 and gene expression profiling in erythroid cells to show that PU.1 regulates an extensive network of genes that constitute major pathways for controlling growth and survival of immature erythroid cells. By analyzing fetal liver erythroid progenitors from mice with low PU.1 expression, we also show that the earliest erythroid committed cells are dramatically reduced in vivo. Furthermore, we find that PU.1 also regulates many of the same genes and pathways in other blood cells, leading us to propose that PU.1 is a multifaceted factor with overlapping, as well as distinct, functions in several hematopoietic lineages

    Chronic Viral Infection and Primary Central Nervous System Malignancy

    Get PDF
    Primary central nervous system (CNS) tumors cause significant morbidity and mortality in both adults and children. While some of the genetic and molecular mechanisms of neuro-oncogenesis are known, much less is known about possible epigenetic contributions to disease pathophysiology. Over the last several decades, chronic viral infections have been associated with a number of human malignancies. In primary CNS malignancies, two families of viruses, namely polyomavirus and herpesvirus, have been detected with varied frequencies in a number of pediatric and adult histological tumor subtypes. However, establishing a link between chronic viral infection and primary CNS malignancy has been an area of considerable controversy, due in part to variations in detection frequencies and methodologies used among researchers. Since a latent viral neurotropism can be seen with a variety of viruses and a widespread seropositivity exists among the population, it has been difficult to establish an association between viral infection and CNS malignancy based on epidemiology alone. While direct evidence of a role of viruses in neuro-oncogenesis in humans is lacking, a more plausible hypothesis of neuro-oncomodulation has been proposed. The overall goals of this review are to summarize the many human investigations that have studied viral infection in primary CNS tumors, discuss potential neuro-oncomodulatory mechanisms of viral-associated CNS disease and propose future research directions to establish a more firm association between chronic viral infections and primary CNS malignancies
    corecore