5,859 research outputs found

    Characterization of distinct subpopulations of hepatic macrophages in HFD/obese mice.

    Get PDF
    The current dogma is that obesity-associated hepatic inflammation is due to increased Kupffer cell (KC) activation. However, recruited hepatic macrophages (RHMs) were recently shown to represent a sizable liver macrophage population in the context of obesity. Therefore, we assessed whether KCs and RHMs, or both, represent the major liver inflammatory cell type in obesity. We used a combination of in vivo macrophage tracking methodologies and adoptive transfer techniques in which KCs and RHMs are differentially labeled with fluorescent markers. With these approaches, the inflammatory phenotype of these distinct macrophage populations was determined under lean and obese conditions. In vivo macrophage tracking revealed an approximately sixfold higher number of RHMs in obese mice than in lean mice, whereas the number of KCs was comparable. In addition, RHMs comprised smaller size and immature, monocyte-derived cells compared with KCs. Furthermore, RHMs from obese mice were more inflamed and expressed higher levels of tumor necrosis factor-α and interleukin-6 than RHMs from lean mice. A comparison of the MCP-1/C-C chemokine receptor type 2 (CCR2) chemokine system between the two cell types showed that the ligand (MCP-1) is more highly expressed in KCs than in RHMs, whereas CCR2 expression is approximately fivefold greater in RHMs. We conclude that KCs can participate in obesity-induced inflammation by causing the recruitment of RHMs, which are distinct from KCs and are not precursors to KCs. These RHMs then enhance the severity of obesity-induced inflammation and hepatic insulin resistance

    Chemical Targeting of GAPDH Moonlighting Function in Cancer Cells Reveals Its Role in Tubulin Regulation

    Get PDF
    SummaryGlycolytic enzymes are attractive anticancer targets. They also carry out numerous, nonglycolytic “moonlighting” functions in cells. In this study, we investigated the anticancer activity of the triazine small molecule, GAPDS, that targets the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). GAPDS showed greater toxicity against cancer cells compared to a known GAPDH enzyme inhibitor. GAPDS also selectively inhibited cell migration and invasion. Our analysis showed that GAPDS treatment reduced GAPDH levels in the cytoplasm, which would modulate the secondary, moonlighting functions of this enzyme. We then used GAPDS as a probe to demonstrate that a moonlighting function of GAPDH is tubulin regulation, which may explain its anti-invasive properties. We also observed that GAPDS has potent anticancer activity in vivo. Our study indicates that strategies to target the secondary functions of anticancer candidates may yield potent therapeutics and useful chemical probes

    Proteomics-based dissection of biotic stress responsive proteins in bread wheat (Triticum aestivum L.)

    Get PDF
    Proteomic techniques that allow the identification and quantification of stress-related proteins, mapping dynamics of their expression and post translational modifications represent an important approach in the research of plant stresses. Biotic stress is one of the major stresses limiting crop productivity and the geographical distribution of many important crops worldwide. Two hundred and seventeen protein spots reproducibly were detected from six gels by using two-dimensional electrophoresis. After tryptic digestion, MALDI-TOF/MS analysis and database searching of some of the identified proteins indicated that the proteins are known to be involved in several biotic stress related functions as disease associate with pathogens. Mass spectrometry analysis allowed the identification of 185 differential expressed proteins with isoforms including well known biotic stress  esponsive proteins. Keumgang (13%), Jinpum (8%), China-108 (14%), Yeonnon-67 (11%), Norin-61 (22%) and Kantou-107 (32%) were identified as biotic stress responses proteins directly coupled to disease and pathogen infection on wheat. Nevertheless, our studies provides new insights into identification of biotic stress responses protein in disease infected wheat grain by natural condition, the post-translational modification in  protein sequences, verify eventual differences among the genotypes in relation to them, and demonstrates the advantages of proteomic analysis.Key words: Biotic stress, matrix-assisted laser desorption ionization-time of flight, proteomics, posttranslational modification, two-dimensional electrophoresis, wheat

    Triglyceride glucose index predicts coronary artery calcification better than other indices of insulin resistance in Korean adults: the Kangbuk Samsung Health Study

    Get PDF
    Purpose Insulin resistance is one of the most important mechanisms in the development of diabetes, and it is closely related to the presence and severity of coronary heart disease. Triglyceride glucose (TyG) index is a useful marker of insulin resistance; however, few studies have investigated the relationship between TyG and subclinical atherosclerosis. Therefore, we evaluated the association of TyG and subclinical coronary atherosclerosis as measured by coronary artery calcium score (CACS). Methods Our study included 30,776 participants (mean age of 41 years, 80.4% male) enrolled in a health screening program, in whom CACS were measured. Homeostasis model assessment of insulin resistance (HOMA-IR), TyG index, TyG-body mass index (BMI), and TyG-waist circumference (WC) were subsequently analyzed. Indices were calculated using the following formulae: HOMA-IR=fasting insulin (ÎŒU/mL)×fasting plasma glucose (FPG; mmol/L)/22.5; TyG index=Ln [TG (mg/dL)×FPG (mg/dL)/2]; TyG-BMI=TyG index×BMI; and TyG-WC=TyG index×WC. CACS was measured using multidetector computed tomography, and the presence of coronary artery calcification (CAC) was defined by CACS>0. Results The prevalence of CAC was 14.4% in the study population. Multivariate logistic regression analysis showed that participants with TyG-BMI in the highest tertile were 1.638 times more likely to have CAC after adjustment for other metabolic parameters compared with participants with TyG-BMI in the lowest tertile (odds ratio, 1.612; 95% confidence interval, 1.465 to 1.774). The receiver operating characteristics curve for prediction of CAC showed that TyG-WC index had a higher area under the curve (AUC=0.626) than other indices (AUCTyG=0.617, AUCTyG-BMI=0.616, AUCHOMA-IR=0.562). Conclusion TyG index predicted CAC better than other markers of insulin resistance, and could be a useful marker for predicting subclinical atherosclerosis

    A transcriptomic analysis of serial-cultured, tonsil-derived mesenchymal stem cells reveals decreased integrin α3 protein as a potential biomarker of senescent cells

    Get PDF
    Abstract Background Mesenchymal stem cells (MSCs) have been widely used for stem cell therapy, and serial passage of stem cells is often required to obtain sufficient cell numbers for practical applications in regenerative medicine. A long-term serial cell expansion can potentially induce replicative senescence, which leads to a progressive decline in stem cell function and stemness, losing multipotent characteristics. To improve the therapeutic efficiency of stem cell therapy, it would be important to identify specific biomarkers for senescent cells. Methods Tonsil-derived mesenchymal stem cells (TMSCs) with 20–25 passages were designated as culture-aged TMSCs, and their mesodermal differentiation potentials as well as markers of senescence and stemness were compared with the control TMSCs passaged up to 8 times at the most (designated as young). A whole-genome analysis was used to identify novel regulatory factors that distinguish between the culture-aged and control TMSCs. The identified markers of replicative senescence were validated using Western blot analyses. Results The culture-aged TMSCs showed longer doubling time compared to control TMSCs and had higher expression of senescence-associated (SA)-ÎČ-gal staining but lower expression of the stemness protein markers, including Nanog, Oct4, and Sox2 with decreased adipogenic, osteogenic, and chondrogenic differentiation potentials. Microarray analyses identified a total of 18,614 differentially expressed genes between the culture-aged and control TMSCs. The differentially expressed genes were classified into the Gene Ontology categories of cellular component (CC), functional component (FC), and biological process (BP) using KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis. This analysis revealed that those genes associated with CC and BP showed the most significant difference between the culture-aged and control TMSCs. The genes related to extracellular matrix-receptor interactions were also shown to be significantly different (p < 0.001). We also found that culture-aged TMSCs had decreased expressions of integrin α3 (ITGA3) and phosphorylated AKT protein (p-AKT-Ser473) compared to the control TMSCs. Conclusions Our data suggest that activation of ECM-receptor signaling, specifically involved with integrin family-mediated activation of the intracellular cell survival-signaling molecule AKT, can regulate stem cell senescence in TMSCs. Among these identified factors, ITGA3 was found to be a representative biomarker of the senescent TMSCs. Exclusion of the TMSCs with the senescent TMSC markers in this study could potentially increase the therapeutic efficacy of TMSCs in clinical applications

    NCoR Repression of LXRs Restricts Macrophage Biosynthesis of Insulin-Sensitizing Omega 3 Fatty Acids

    Get PDF
    SummaryMacrophage-mediated inflammation is a major contributor to obesity-associated insulin resistance. The corepressor NCoR interacts with inflammatory pathway genes in macrophages, suggesting that its removal would result in increased activity of inflammatory responses. Surprisingly, we find that macrophage-specific deletion of NCoR instead results in an anti-inflammatory phenotype along with robust systemic insulin sensitization in obese mice. We present evidence that derepression of LXRs contributes to this paradoxical anti-inflammatory phenotype by causing increased expression of genes that direct biosynthesis of palmitoleic acid and ω3 fatty acids. Remarkably, the increased ω3 fatty acid levels primarily inhibit NF-ÎșB-dependent inflammatory responses by uncoupling NF-ÎșB binding and enhancer/promoter histone acetylation from subsequent steps required for proinflammatory gene activation. This provides a mechanism for the in vivo anti-inflammatory insulin-sensitive phenotype observed in mice with macrophage-specific deletion of NCoR. Therapeutic methods to harness this mechanism could lead to a new approach to insulin-sensitizing therapies

    Comparison of the Efficacy and Tolerability between Same-day Picosulfate and Split-dose Polyethylene Glycol Bowel Preparation for Afternoon Colonoscopy: A Prospective, Randomized, Investigator-blinded Trial

    Get PDF
    Background/AimsIn the present study, we evaluated the efficacy and tolerability between same-day bowel preparation protocols using 2 sachets of Picosulfate and a 4 L split-dose polyethylene glycol (PEG) bowel preparation for afternoon colonoscopy.MethodsThe study had a single-center, prospective, randomized, and investigator-blinded, non-inferiority design. We evaluated bowel preparation quality according to the Ottawa scale, patient tolerability, compliance, incidence of adverse events, sleep quality, and polyp/adenoma detection rate.ResultsAmong the 196 patients analyzed (mean age, 55.3 years; 50.3% men), 97 received the same-day regimen of 2 sachets of picosulfate (group A) and 99 received the 4 L split-dose PEG regimen (group B). The Ottawa score of the total colon was 4.05±1.56 in group A and 3.80±1.55 in group B (P=0.255). The proportion of patients having adequate bowel preparation in the same-day picosulfate group (61.5%) was slightly less than the 4 L PEG group (71.3%); however, the difference was not statistically significant (P=0.133). Tolerability of the group A regimen was superior to that of the group B regimen (P<0.000). The same-day picosulfate regimen was associated with fewer adverse events, such as abdominal bloating (P=0.037) and better sleep quality (P<0.000).ConclusionsThe same-day picosulfate regimen and the 4 L split-dose PEG regimen had similar efficacy in bowel preparation for afternoon colonoscopy. However, the same-day picosulfate regimen was easier to administer, produced fewer adverse events, and enabled better sleep quality

    Humulus japonicus attenuates LPS-and scopolamine-induced cognitive impairment in mice

    Get PDF
    Background : Neuroinflammation plays an important role in cognitive decline and memory impairment in neurodegenerative disorders. Previously, we demonstrated that Humulus japonicus (HJ) has anti-inflammatory effects in rodent models of Alzheimer’s disease and Parkinson’s disease. The present study aimed to examine the protective potential of HJ extracts against lipopolysaccharide (LPS)-induced cognitive impairment and scopolamine-induced amnesia in mouse models. Cognitive improvement of mice was investigated by novel object recognition test. For analyzing effects on neuroinflammation, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed. Results : We found that the oral administration of HJ significantly improved cognitive dysfunction induced by LPS in a novel object recognition test. The LPS-induced activation of microglia was notably decreased by HJ treatment in the cortex and hippocampus. HJ administration with LPS also significantly increased the mRNA expression of interleukin (IL)-10 and decreased the mRNA expression of IL-12 in the parietal cortex of mice. The increased expression of LPS-induced complement C1q B chain (C1bq) and triggering receptor expressed on myeloid cells 2 (Trem2) genes was significantly suppressed by HJ treatment. In addition, HJ administration significantly improved novel object recognition in a scopolamine-induced amnesia mouse model. Conclusions : These findings revealed that HJ has a beneficial effect on cognitive impairment and neuroinflammation induced by systemic inflammation and on amnesia induced by scopolamine in mice.This study was supported by the KRIBB Research Initiative Program of the Republic of Korea (KGS1042221) and the Development of Platform Technology for Innovative Medical Measurements funded by Korea Research Institute of Standards and Science (KRISS-GP2022-2)
    • 

    corecore