161 research outputs found

    Joint Geometrical and Statistical Alignment for Visual Domain Adaptation

    Full text link
    This paper presents a novel unsupervised domain adaptation method for cross-domain visual recognition. We propose a unified framework that reduces the shift between domains both statistically and geometrically, referred to as Joint Geometrical and Statistical Alignment (JGSA). Specifically, we learn two coupled projections that project the source domain and target domain data into low dimensional subspaces where the geometrical shift and distribution shift are reduced simultaneously. The objective function can be solved efficiently in a closed form. Extensive experiments have verified that the proposed method significantly outperforms several state-of-the-art domain adaptation methods on a synthetic dataset and three different real world cross-domain visual recognition tasks

    Learning a Pose Lexicon for Semantic Action Recognition

    Get PDF
    This paper presents a novel method for learning a pose lexicon comprising semantic poses defined by textual instructions and their associated visual poses defined by visual features. The proposed method simultaneously takes two input streams, semantic poses and visual pose candidates, and statistically learns a mapping between them to construct the lexicon. With the learned lexicon, action recognition can be cast as the problem of finding the maximum translation probability of a sequence of semantic poses given a stream of visual pose candidates. Experiments evaluating pre-trained and zero-shot action recognition conducted on MSRC-12 gesture and WorkoutSu-10 exercise datasets were used to verify the efficacy of the proposed method.Comment: Accepted by the 2016 IEEE International Conference on Multimedia and Expo (ICME 2016). 6 pages paper and 4 pages supplementary materia

    Unsupervised Domain Adaptation: A Multi-task Learning-based Method

    Full text link
    This paper presents a novel multi-task learning-based method for unsupervised domain adaptation. Specifically, the source and target domain classifiers are jointly learned by considering the geometry of target domain and the divergence between the source and target domains based on the concept of multi-task learning. Two novel algorithms are proposed upon the method using Regularized Least Squares and Support Vector Machines respectively. Experiments on both synthetic and real world cross domain recognition tasks have shown that the proposed methods outperform several state-of-the-art domain adaptation methods

    Importance Weighted Adversarial Nets for Partial Domain Adaptation

    Full text link
    This paper proposes an importance weighted adversarial nets-based method for unsupervised domain adaptation, specific for partial domain adaptation where the target domain has less number of classes compared to the source domain. Previous domain adaptation methods generally assume the identical label spaces, such that reducing the distribution divergence leads to feasible knowledge transfer. However, such an assumption is no longer valid in a more realistic scenario that requires adaptation from a larger and more diverse source domain to a smaller target domain with less number of classes. This paper extends the adversarial nets-based domain adaptation and proposes a novel adversarial nets-based partial domain adaptation method to identify the source samples that are potentially from the outlier classes and, at the same time, reduce the shift of shared classes between domains

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Signal analysis using a multiresolution form of the singular value decomposition

    Get PDF
    This paper proposes a multiresolution form of the singular value decomposition (SVD) and shows how it may be used for signal analysis and approximation. It is well-known that the SVD has optimal decorrelation and subrank approximation properties. The multiresolution form of SVD proposed here retains those properties, and moreover, has linear computational complexity. By using the multiresolution SVD, the following important characteristics of a signal may be measured, at each of several levels of resolution: isotropy, sphericity of principal components, self-similarity under scaling, and resolution of mean-squared error into meaningful components. Theoretical calculations are provided for simple statistical models to show what might be expected. Results are provided with real images to show the usefulness of the SVD decomposition

    Investigation of Different Skeleton Features for CNN-based 3D Action Recognition

    Full text link
    Deep learning techniques are being used in skeleton based action recognition tasks and outstanding performance has been reported. Compared with RNN based methods which tend to overemphasize temporal information, CNN-based approaches can jointly capture spatio-temporal information from texture color images encoded from skeleton sequences. There are several skeleton-based features that have proven effective in RNN-based and handcrafted-feature-based methods. However, it remains unknown whether they are suitable for CNN-based approaches. This paper proposes to encode five spatial skeleton features into images with different encoding methods. In addition, the performance implication of different joints used for feature extraction is studied. The proposed method achieved state-of-the-art performance on NTU RGB+D dataset for 3D human action analysis. An accuracy of 75.32\% was achieved in Large Scale 3D Human Activity Analysis Challenge in Depth Videos

    Creating Simplified 3D Models with High Quality Textures

    Get PDF
    This paper presents an extension to the KinectFusion algorithm which allows creating simplified 3D models with high quality RGB textures. This is achieved through (i) creating model textures using images from an HD RGB camera that is calibrated with Kinect depth camera, (ii) using a modified scheme to update model textures in an asymmetrical colour volume that contains a higher number of voxels than that of the geometry volume, (iii) simplifying dense polygon mesh model using quadric-based mesh decimation algorithm, and (iv) creating and mapping 2D textures to every polygon in the output 3D model. The proposed method is implemented in real-time by means of GPU parallel processing. Visualization via ray casting of both geometry and colour volumes provides users with a real-time feedback of the currently scanned 3D model. Experimental results show that the proposed method is capable of keeping the model texture quality even for a heavily decimated model and that, when reconstructing small objects, photorealistic RGB textures can still be reconstructed.Comment: 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Page 1 -

    Learning Discriminative Bayesian Networks from High-dimensional Continuous Neuroimaging Data

    Get PDF
    Due to its causal semantics, Bayesian networks (BN) have been widely employed to discover the underlying data relationship in exploratory studies, such as brain research. Despite its success in modeling the probability distribution of variables, BN is naturally a generative model, which is not necessarily discriminative. This may cause the ignorance of subtle but critical network changes that are of investigation values across populations. In this paper, we propose to improve the discriminative power of BN models for continuous variables from two different perspectives. This brings two general discriminative learning frameworks for Gaussian Bayesian networks (GBN). In the first framework, we employ Fisher kernel to bridge the generative models of GBN and the discriminative classifiers of SVMs, and convert the GBN parameter learning to Fisher kernel learning via minimizing a generalization error bound of SVMs. In the second framework, we employ the max-margin criterion and build it directly upon GBN models to explicitly optimize the classification performance of the GBNs. The advantages and disadvantages of the two frameworks are discussed and experimentally compared. Both of them demonstrate strong power in learning discriminative parameters of GBNs for neuroimaging based brain network analysis, as well as maintaining reasonable representation capacity. The contributions of this paper also include a new Directed Acyclic Graph (DAG) constraint with theoretical guarantee to ensure the graph validity of GBN.Comment: 16 pages and 5 figures for the article (excluding appendix

    Cooperative Training of Deep Aggregation Networks for RGB-D Action Recognition

    Full text link
    A novel deep neural network training paradigm that exploits the conjoint information in multiple heterogeneous sources is proposed. Specifically, in a RGB-D based action recognition task, it cooperatively trains a single convolutional neural network (named c-ConvNet) on both RGB visual features and depth features, and deeply aggregates the two kinds of features for action recognition. Differently from the conventional ConvNet that learns the deep separable features for homogeneous modality-based classification with only one softmax loss function, the c-ConvNet enhances the discriminative power of the deeply learned features and weakens the undesired modality discrepancy by jointly optimizing a ranking loss and a softmax loss for both homogeneous and heterogeneous modalities. The ranking loss consists of intra-modality and cross-modality triplet losses, and it reduces both the intra-modality and cross-modality feature variations. Furthermore, the correlations between RGB and depth data are embedded in the c-ConvNet, and can be retrieved by either of the modalities and contribute to the recognition in the case even only one of the modalities is available. The proposed method was extensively evaluated on two large RGB-D action recognition datasets, ChaLearn LAP IsoGD and NTU RGB+D datasets, and one small dataset, SYSU 3D HOI, and achieved state-of-the-art results
    • …
    corecore