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Signal Analysis Using a Multiresolution Form of the
Singular Value Decomposition

Ramakrishna Kakarala and Philip O. Ogunbona, Senior Member, IEEE

Abstract—This paper proposes a multiresolution form of the
singular value decomposition (SVD) and shows how it may be
used for signal analysis and approximation. It is well-known that
the SVD has optimal decorrelation and subrank approximation
properties. The multiresolution form of SVD proposed here
retains those properties, and moreover, has linear computational
complexity. By using the multiresolution SVD, the following
important characteristics of a signal may be measured, at each
of several levels of resolution: isotropy, sphericity of principal
components, self-similarity under scaling, and resolution of
mean-squared error into meaningful components. Theoretical
calculations are provided for simple statistical models to show
what might be expected. Results are provided with real images to
show the usefulness of the SVD decomposition.

Index Terms—Karhunen–Loève transform, multivariate statis-
tics, principal components analysis, singular value decomposition.

I. INTRODUCTION

T HE singular value decomposition (SVD) of a real-valued
matrix , with , may be written

(1)

Here, is an orthogonal matrix whose columns (called
the “left singular vectors”) are the eigenvectors of , is a

matrix whose columns (the “right singular vectors”)
are eigenvectors of , and is the diagonal matrix
whose entries (the “singular values”) are the square roots of the
corresponding eigenvalues of . Letting ,
the SVD may also be written . As discussed in more
detail in the following, this second form reveals a useful con-
nection with recent research in signal-adapted filterbanks:
is essentially the decorrelating matrix obtained from an input
signal’s measured second-order statistics, andcontains the
subband decomposition of the signal. This paper shows how, by
recursively resampling and decomposing the largest rank-one
matrix, the SVD may be developed into a multiresolution signal
decomposition. Furthermore, it describes how the multiresolu-
tion SVD thereby obtained provides useful information for an-
alyzing, and comparing, signals.
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The SVD is closely linked with the concepts of principal com-
ponent analysis (PCA) and Karhunen–Loève transform (KLT).
The relationships among SVD, PCA, and KLT are discussed in
detail elsewhere [1], [2, Ch. 8], [3], but it is useful to review the
concepts briefly here in order to establish relationships with re-
cent research. Let the matrix be interpreted as a data
matrix containing, for example, measurements on each of
individuals. The data matrix is centered by removing the mean
in each row from elements of that row; in matrix terms this is

, where is the identity,
and is the vector containing all ones. Then is the
scatter matrixof the data, and following an eigen-decomposi-
tion, it may be written , where is the diagonal
matrix of eigenvalues. Theprincipal componentsare obtained
by the transformation , showing that is the same as

above, aside from mean removal. Since the scatter matrix is a
scalar multiple of the covariance matrix, we may also interpret

as the KLT for thesamplein . Obviously, is not the KLT
for the population, if is sampled from a random vector.

The links between the multiresolution SVD that we intro-
duce below and other, well-known, multiresolution decomposi-
tions, including wavelets and filterbanks, may be examined by
employing the system approach provided by Unser [4, p. 47].
Fig. 1(a) shows how a sequence of-dimensional vectors, de-
noted , is generated from the input sequence . Specif-
ically

(2)

Suppose that a filtered vector output signal is constructed
by the formula

(3)

Here, is a sequence of matrices. With the transfer
function matrix being denoted , we obtain
the -transform representation

(4)

where and are, respectively, the-transforms of
the vector sequences and . Fig. 1(b) provides the
system block diagram, which is simply a polyphase analysis fil-
terbank [15]. A multiresolution decomposition is obtained from
this system by recursively applying the analysis filterbank to
one or more of the components of the output vector . For
example, a wavelet multiresolution decomposition is obtained
by setting , and setting ,

1057–7149/01$10.00 © 2001 IEEE
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Fig. 1. (a) Signalx(k) divided into nonoverlapping blocks of lengthp, each block contained in vectorX(k). (b) System diagram for a filterH(z), operating
onX(k) and producing output̂X(k).

where and are, respectively, the transfer func-
tions of suitably constructed lowpass and highpass filters. In the
wavelet case, further levels of decomposition are obtained by
recursively applying this filterbank to the output of the lowpass
filter .

A SVD may also be cast in this framework. Suppose we group
successive column vectors into a matrix, de-

noted . Then, using (3) with for , and
otherwise, we obtain that , where is the ma-
trix whose columns are successive vectors . If is the
matrix of left singular vectors of , then is simply
a form of SVD, as mentioned above. Therefore, the SVD may
be viewed as a filterbank whose transfer function is a constant
matrix, i.e., , where the matrix contains the signal’s
left singular vectors. The multiresolution SVD described below
essentially repeats this construction to obtain successive levels
of decomposition.

The idea of using the left singular vectors to filter the input
signal has been proposed in other papers on filterbanks [4]–[7].
Those papers focus on how “optimal” filters may be designed
for energy compaction, where optimality is defined as an en-
semble-averaged measure. In this paper, we focus not on filter
design, but rather on how a multiresolution SVD may be con-
structed and, more importantly, how it may be interpreted. Our
approach focuses on deterministic signals, although the likeli-
hood statistics proposed below implicitly assume normal distri-
butions.

The organization of this paper is as follows. In Section III,
we show how the SVD may be developed into a multiresolution
analysis. The computational complexity of this decomposition
is analyzed in Section IV. In Section V, the main results of this
paper are presented:

1) concept of coding gain is interpreted in terms of the stan-
dard likelihood ratio for sphericity of principal compo-
nents;

2) self-similarity of a signal at different scales is determined
by checking for repeating eigen-decompositions;

3) mean squared error (MSE) between two signals is decom-
posed into a sum of MSEs over the principal components.

In Sections VI and VII, examples are given of signals and im-
ages analyzed using the proposed techniques.

II. NOTATION AND CONVENTIONS

Throughout this paper, the following notation and conven-
tions are used. A element row vector is indexed , ,

, and similarly a matrix is indexed

...
...

...

The th row of matrix is denoted , and the th column
is denoted . The methods described in this paper are for
real-valued signals, but they extend to complex-valued signals
by replacing every instance of transpose with conjugate-trans-
pose.

Every positive semidefinite matrix has an eigen-decompo-
sition , where is an orthogonal matrix of eigen-
vectors, and is the diagonal matrix of eigenvalues arranged in
decreasing order. Noting that if is an eigenvector of with
eigenvalue , then so is , we henceforth assume without loss
of generality that the first nonzero element of each eigenvector
is positive.

Henceforth, a matrix denoted (possibly with subscripts)
represents a diagonal matrix of singular values. The singular
values are written for , or sometimes
when the matrix needs to be identified.Singular values are al-
ways assumed to be in arranged in decreasing order so that
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. Note that the SVD
may be written as a sum of outer products

(5)

Each outer product is a rank one matrix, and
the partial sum

(6)

has rank for . This partial sum has an important
approximation property [9], which may be described as follows.
The Frobenius norm of is defined as

Then, for any matrix with , we
have that

(7)

In this sense, provides the best rankapproximation to .
Note that (7) implies

(8)

The row centeringmatrix ,
which appeared in Section I, is symmetric and idempotent, since

. It is easily shown that the singular values of
are , and .

Suppose now that is the mean corrected matrix
for some matrix , with . Let the SVD of
be denoted , with the eigenvector matrix for

; the singular value matrix; and the matrix
of eigenvectors of . As in (6), let

(9)

From (7) it follows that is the optimum rank approxima-
tion to . Suppose now that the SVD of is and
that is obtained as in (6). Using the results in [8, Ch. 3], we
may establish some important facts about the respective SVDs
of and .

1) For , we have

(10)

A proof is provided in the Appendix.
2) From (10), it follows that mean correction generally re-

duces the error in rankapproximations

(11)

3) Let be the mean matrix (constant
along rows). Then from (11), it follows that adding the

mean to the rank approximation to , i.e., forming
, gives a better approximation to the original

matrix than simply using since

(12)

Hence, from the viewpoint of approximation, it is better
to remove the mean, form the rankapproximation to
the corrected matrix, and add the mean back at the end.
In [10, p. 593], it is shown that the columns of
are the optimum -dimensionalsubspaceapproximation
to the corresponding columns of.

III. M ULTIRESOLUTION FORM OF THESVD

This section describes how the multiresolution SVD may be
constructed. Recall that in the dyadic wavelet transform, the
signal is filtered separately by low and high pass filters, and the
output of each is decimated by a factor of two. This procedure
is recursively repeated on the decimatedlowpassoutput, until
the desired level of decomposition is achieved.

The basic idea behind the multiresolution SVD is to replace
filtering with SVD at each level of approximation. The idea is
now described, initially for one-dimensional (1-D) signals, and
for the dyadic case. Extensions to higher dimensions, and to
-adic decompositions, are described subsequently.

A. One-Dimensional Case

Let represent a finite-extent, 1-D
signal. Assume that is divisible by for some . Let the
data matrix at the first level, denoted , be constructed so that
its top row contains the odd-numbered samples, and the bottom
row contains the even-numbered samples

(13)

The corresponding centered matrix is . Let
be the eigenvector matrix bringing the scatter matrix

into diagonal form: , where
contains the squares of the two

singular values, with . Now let , so
that .

The top row of , namely , contains the principal
component that corresponds to the largest eigenvalue, and may
be considered the “smooth” or “approximation” component
when pairs of elements in are analyzed. The bottom row con-
tains the “detail” component that corresponds to the smallest
eigenvalue. Let , and represent
the smooth and detail components, respectively. Note that
and are uncorrelated since the rows of have zero mean,
and moreover

(14)

Hence the signal has been decomposed into uncorrelated
smooth and detail components.

The next level of the multiresolution SVD repeats the proce-
dure described above, but now using the smooth component
in place of . This procedure is repeated recursivelytimes.
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The procedure may now be described formally. Let
, so that the initial “smooth” component is the

original signal. For each level, the vector has
elements, which are denoted as follows:

The -level dyadic SVD is defined by the following equations.
For , set

(15)

(16)

(17)

(18)

(19)

Note that in (17), we require the singular values to be arranged
so that .

A complete signal representation may be obtained from the
dyadic multiresolution SVD as follows. To fully specify, it is
sufficient to store the lowest resolution smooth component,
and the detail components , for . In addition,
the mean vectors , and the eigenvector ma-
trices must also be stored. Hence, one may write the dyadic
multiresolution SVD as the following transformation:

(20)

It is easy to see how may be reconstructed from the right hand
side, since each of the steps in (15)–(18) is reversible.

The same procedure may be applied without mean removal.
Although mean removal improves approximation (see Sec-
tion II), reasons tonot remove the mean include: to reduce
computation, and to resolve the mean-squared error between
two signals into meaningful components (see Section V-D).
Note that without mean removal, the components ofare not
necessarily uncorrelated, only orthogonal.

A useful inequality for singular values at different resolution
levels is

(21)

if mean correction is used. If the mean is not removed, then
equality is obtained in (21). This inequality follows from (8),
(10), and (14).

To illustrate the points above, we provide the following ex-
ample.

Example 1: Let be the eight-element vector
. We compute its two-level dyadic SVD as follows.

We have that

The scatter matrix of the columns is

The singular values of this matrix are , .
The corresponding eigenvectors are ,
and . The transformation (18) pro-
duces

The next level operates on ,

and produces (with found to be a constant matrix with
all entries equal to 16, and found to be the same as )

Hence, the complete two-level ( ) SVD is

The procedure described may be generalized in several
ways. First, it is possible to decompose the detail component

at each level into two further components, using the same
method as for the smooth component. In this manner a general
transformation (similar in spirit to the wavelet packet approach
[11]) is obtained. Second, one may divide the original signal
into nonoverlapping blocks of length (assuming that is
divisible by ). At each level, a scatter matrix is formed,
and its eigenvector matrix is employed to decorrelate the
centered block matrix using (18). Theprincipal components
obtained may be ordered by the eigenvalue; the component
corresponding to the maximum eigenvalue is essentially the
“smooth” component, and this may be further decomposed to
form the next level. Combinations of these generalizations are
also possible.

B. Two and Higher Dimensions

The multiresolution SVD may be formulated in two and
higher dimensions. We show here in detail how the formulation
works in two dimensions, and indicate briefly the extension to
higher dimensions.

Suppose that is a matrix. As in the 1-D case, we
decompose into blocks, and analyze the covariance of
the blocks. While , may be chosen arbitrarily, it is convenient
to work with , which is perhaps the smallest truly
two-dimensional (2-D) block format.

The first level of decomposition proceeds as follows. Divide
into nonoverlapping blocks, and arrange each block into

a vector by stacking columns to form the data matrix.
The blocks may be taken in transpose raster-scan manner, that
is, proceeding downward first, and then to the right. Specifically,
in terms of the elements of , the first data matrix is shown in
the equation at the bottom of the next page. The eigen-decom-
position of the scatter matrix is ,
in which we choose to have the singular values arranged in de-
creasing order: .
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As in the 1-D case, let . Note that the top row
of corresponds to the largest eigenvalue, and therefore may
be considered the “smooth” component inherent in the
blocks. The remaining rows contain the “detail” components,
which may correspond to edges, or texture, in an image for ex-
ample. The rows are orthogonal (and hence uncorrelated be-
cause they have zero mean), since .

Note that the elements in each row may be rearranged to form
a matrix. To proceed to the next stage of the de-
composition, let denote the matrix formed by
rearranging the row into a matrix, by first filling in the
columns, and next the rows, i.e., as shown in (22) at the bottom
of the page. Essentially, forms the “smooth” image compo-
nent inherent in the collection of blocks. In a similar way,
each of the three remaining rows , ,
may be rearranged into matrices, which we denote
respectively by , , and .

The next level of the transform now proceeds as above, but
with replaced by . The process is repeated recursively for

levels, using equations analogous to (15)–(18). The complete
decomposition may be stated as follows:

(23)
As in the 1-D case, the decomposition may be performed

without mean removal, with the same benefits and drawbacks.
Furthermore, the inequality (21) extends to two dimensions,
with

(24)

Again, equality is obtained if mean correction is not employed.
The following example illustrates the concepts previously

discussed.

Example 2: The image “boats” in Fig. 2 is used to compute
the two-level SVD that is shown in Fig. 3. The transformation
matrices are as follows:

Each of the columns of the above matrices may be rearranged
into a spatial filter, according to the pixel elements that
they operate on. For example, the columns ofmay be rear-
ranged into the filters shown below [from left to right,
rearrangements of , , ]

Note that is a local average (smoothing),
is a vertical edge filter, is a horizontal edge filter,
and is a diagonal edge filter. A similar interpretation
may be given to the columns of . Note that for each, the
leftmost eigenvector , which corresponds to the largest
eigenvalue, is simply a local average:hence, for this image,
the “smooth” components and are obtained as a local
average ofadjacent pixels.Furthermore, the detail components

for essentially contain one of the following:
horizontal edges, vertical edges, or diagonal edges. The pattern
is visually apparent in Fig. 3.

...
...

...

...
. . .

...

(22)
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Fig. 2. Four test images used in the paper.

The emergence of edge filters in the eigenvectors in this ex-
ample is an interesting phenomenon. It is essentially caused
by two factors: 1) the existence of positive correlation between
neighboring pixels and 2) the use of a block size. The
first factor, positive correlation, causes the largest eigenvalue’s
eigenvector to have all positive entries (the reason why is dis-
cussed in detail in Section V). Given that, the remaining eigen-
vectors have to have at least one negative entry in order to be
orthogonal to the largest eigenvector. Now, the second factor, a

block size, means that the remaining eigenvectors are ei-
ther edge or corner filters, depending on whether they have an
even or odd number of negative entries. The emergence of edge
rather than corner filters for this particular image indicates that
the strength of edges exceeds that of corners in this case.

The same remarks concerning generalizations of the multires-
olution SVD made in the 1-D case are applicable in two dimen-
sions. Clearly, we may use any size block, and moreover, we
may choose to decompose additional components in addition
to (or instead of) the one having largest eigenvalue. In

dimensions, we may use blocks havingelements in each di-
mension, e.g., in three dimensions; of course, this may
be generalized to any size blocks.

IV. COMPLEXITY ANALYSIS

Here, we show that a-adic multiresolution SVD has
complexity for 1-D signals . A similar
approach to the one presented below shows that in two-dimen-
sions, the complexity is also linear in the number of samples
(pixels). A count of the number of arithmetic operations is given
to provide a more precise analysis of the computational burden.

In the -adic decomposition, each level uses only of
the number of samples as the next lower level. The maximum
number of useful levels of decomposition with a length
signal is . Note that at level , the
matrix contains only zeros after mean removal, so
this level is not actually necessary.
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Fig. 3. Two-level SVD of the image “boats” is shown. The subimages are arranged in clockwise order of decreasing eigenvalue. To aid visibility, the subimages
have been contrast-stretched so that the pixel values fit into the range 0,. . ., 255. Moreover, the absolute value of the edge images is shown since the negative
values are as significant as the positive ones.

Suppose that has length . We count the number
of operations to compute . To form the centered block matrix

, we note that each row has elements. Removing the
mean in each row requires additions, one division,
and subtractions, for a total of operations. Hence,
the total cost for all rows is operations.

Next, to compute each element of the scatter matrix
, we need a total of multiplications and addi-

tions. Since the scatter matrix is symmetric, we need compute
only entries. Hence, the total cost of computing the
scatter matrix from is operations. Diago-
nalizing the scatter matrix may be done in a finite number of op-
erations, which we denote . A rough estimate is
for (estimated using the “flops” counter in MATLAB),
which is ; see also [3, p. 165]. Computing requires
multiplications and additions for each of the elements,
giving a total of operations for the entire matrix.
Adding all of these together, we find that the first level requires

operations.

Let be the cost independent of.
It is easy to see that computing the next level of decomposition
requires exactly operations, and in general,
the th level requires operations. Hence
the total cost for levels is

(25)

For large , the right hand side is bounded above by ,
which is a linear function of . Hence, the overall complexity
is .

For comparison, an -point FFT requires op-
erations if is a power of two. For , the FFT’s cost
slightly exceeds the cost of computing the dyadic SVD up to
seven levels.

V. INTERPRETATION OFDECOMPOSITION

The -adic multiresolution SVD of a signal provides three
matrices at each level: the singular value matrix, the decor-
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relating filter matrix , and the orthogonal subband matrix
. Each of these sets of matrices provides useful information

about the signal being analyzed. The singular values, for ex-
ample, are proportional to the subband variances: the rows of

have zero mean, and furthermore their covariance matrix is
. The objective of this section is to

describe how the singular values, eigenvectors, and subbands
may be interpreted and utilized.

The value of discussed in this section refers to the number of
elements in each block, regardless of dimension. For example,
if the SVD is computed using blocks on an image, then

.
This section makes use of the log likelihood ratio for mea-

suring the goodness of fit of data to a model. Although the like-
lihood ratio may, in principle, be formulated for any distribution,
much simplification results if the data are normally distributed.
Clearly, there are many instances where data are not normally
distributed, and the application of the specific likelihood ratio
derived under the normal assumption is questionable. However,
it is still worthwhile to determine the form of the likelihood ratio
for the normal case, because the form itself gives insight into
the characteristics of the data that are worth measuring, such as
coding gain (see Section V-B).

A. Eigenvectors as Decorrelating Filters

It is reasonable to wonder whether the principal component
with the largest singular value is the “smooth” component, as
it is called in Section III. Indeed, this terminology is only ap-
propriate if the largest component eigenvector, which is the first
column of the decorrelating matrix, is a lowpass filter.
This need not be the case in general. However, it does occur
when all of the entries of this eigenvector have the same sign;
using the sign convention in Section II, we may suppose all the
entries to be nonnegative, and the corresponding filter is there-
fore lowpass.

An important case when is positive is when all of
the entries in are positive. Then, the Perron–Frobenius the-
orem [12, p. 542] states that the largest eigenvalue has algebraic
multiplicity one, exceeds in modulus all the other eigenvalues,
and moreover has an associated eigenvector whose entries are
all positive. Hence, for positively correlated data, we are guar-
anteed that the largest principal component is unique, and is ex-
tracted by a positively weighted moving average.

Example 2 shows that the leading eigenvector is nearly
for both and . In general, a measure of the data’s

isotropy is the extent which the constant vector fits
as an eigenvector, corresponding to the largest eigenvalue, of
the sample covariance matrix [13, p. 34]. Assuming normally
distributed data, the goodness of fit may be measured from the
likelihood ratio

(26)

Here, for length data, and , are, respec-
tively, the scatter matrix and the largest singular value at theth
level. It is known that, if the isotropy hypothesis is valid, then

is asymptotically distributed as with degrees of
freedom (see [13, p. 63]). If we were attempting a formal hy-

pothesis test, then we would reject the isotropy model at the
level of significance if exceeds the th per-
centile of the corresponding distribution.

B. Coding Gain as Test of Sphericity

Suppose that a -channel filterbank is employed to de-
compose a wide-sense stationary (WSS) input process. Let

denote the (ensemble) variance of the output of the-th
channel, for . The coding gain of a filterbank
[6, Eq. (3)] is defined as the ratio of two errors: the numerator
is the mean-squared reconstruction error when using direct
quantization (PCM); and the denominator is the corresponding
error when a filterbank’s output is quantized to the same bit
rate. Modeling quantization as an additive WSS process, and
assuming optimal bit allocation, it can be shown that coding
gain is the ratio of the arithmetic mean and geometric means

(27)

The well-known inequality between the arithmetic mean and the
geometric mean shows that , with equality if and only
if the variances are all equal. Filterbank design generally seeks
to maximize coding gain.

The relationship between coding gain and the multiresolution
SVD is now established. Suppose that at some levelof a -adic
SVD decomposition, of the measured singular values in
the matrix are nearly equal. Under that supposition, if
then all of the singular values are nearly equal, and therefore
“smooth” and “detail” components are not clearly identifiable
in the signal. In such cases, one has to decide either to further
decomposeall of the components or none at all. This is par-
ticularly relevant in applications where the number of levels of
decomposition are not known beforehand. If , then the
last detail components, say, are equally significant, and
should be treated in the same manner in further processing. The
standard multivariate test for equally significant principal com-
ponents (assuming normally distributed data) is now described
[2, pp. 235–236]. Data with equally significant principal com-
ponents are often described asspherical, and hence the corre-
sponding test is known as a test of sphericity. For a data matrix
having columns, the log likelihood ratio is

(28)

It can be shown that is asymptotically distributed as a
distribution with degrees of freedom.

The likelihood ratio is based on the ratio of the arithmetic and
geometric means of the measured squares of singular values. As
mentioned above, these are proportional to the measured vari-
ances of the subbands.Hence, for normally distributed data,
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the optimal statistic for determining whether smooth and detail
components can be usefully separated is the measured coding
gain.

C. Self-Similarity

The standard wavelet transform requires application of the
same filterbank at each level. If the data are self-similar at
different scales, then it is indeed appropriate to use the same
decorrelating filterbank. However, it is an important question
of how to test for self-similarity. One approach is to formulate
the problem as one of common principal components (CPC)
analysis [13]. In CPC, tests are constructed for the hypothesis
that sample covariance matrices have the same basis of
eigenvectors. In our terminology, this is equivalent to the
hypothesis that there exists a single orthogonal matrix
which can diagonalize each of the scatter matrices up to level

(29)

If this hypothesis holds, then the data may be said to have similar
covariances at different levels of scale, which is an indication of
“self-similarity.”

One difficulty with this hypothesis is that the scatter matrix
at level , namely , depends on the choice of to diago-
nalize the scatter matrix at the next lower level, . There is
no easy way to formulate this relationship. An alternative, and
simpler, approach is to ask whether also diagonalizes
at a given level . If this model, which we call the model of re-
peating principal components (RPC), is correct, then we have

(30)

Using standard multivariate techniques [13, pp. 67–68], the log
likelihood ratio statistic for testing this model is seen to be

(31)

where is the number of columns in . The general theory of
likelihood ratios [2, p. 124] shows that is asymptotically
distributed as with degrees of freedom.

D. Error Analysis

Both peak signal-to-noise ratio (PSNR) and mean-squared
error (MSE) are widely used in image compression research
as simple global measures of fidelity. Obviously, these global
measures of error do not capture either the true nature or the
visibility of the errors. Of great interest is how the error is
distributed among the smooth, edge and texture regions of
the image. For this, we may employ the multiresolution SVD,
without mean removal.

Let be the result of lossy compression applied to a
image . The MSE between and is simply

. Suppose that the multiresolution SVD ofis computed,
without mean removal. Let be the first data matrix (with
dimensions for a block decomposition).
Now, realizing that the smooth and detail components, and

, for , are orthogonal, we may break the
MSE into additive constituents along each of the components.

To do this, let be the eigenvector matrix diagonalizing
. Defining to be the data matrix formed from (in

the same way that is formed from ), we construct a new
matrix, denoted , by the rule

Note that the rows of are not necessarily orthogonal, since
is derived from the data in . However, we have transformed
by employing the same spatial filters as used to obtain, and
therefore, we may compare corresponding components. This al-
lows us to break up the MSE into the MSE within the span of

, and the MSE in the orthogonal complement of the span.
The MSE within the span is simply the closest approximation
to from linear combinations of the orthogonal components
(subbands) in , and the MSE in the orthogonal complement
is simply the residual.

The normalized orthogonal components lie in the columns of
the matrix appearing in the SVD . Note that

. Now, the projection of the error onto
the span of is obtained from the matrix , which
is defined as

(32)

The projection onto the orthogonal complement of the column
space of is determined by the matrix . Hence. the
total error may be written as the sum of components

(33)

The residual MSE is in the rightmost term. Noting that
, we may examine the magnitude

of errors in the symmetric matrix . The diagonal
entries of , denoted , , , reveal the mag-
nitudes of error between and the original image , divided
among the components of . For example measures
the part of the MSE which lies in the smooth component

, and is the error in , the most significant detail
component, and similarly for the remaining elements.

VI. CALCULATIONS FOR THE MARKOV-1 MODEL

To provide insight into the examples that follow in Sec-
tion VII, we examine how the multiresolution SVD performs
for a simple, but widely used, probabilistic image model.
Suppose that we apply the decomposition to an image
whose pixel values are sampled from a zero-mean, wide-sense
stationary random field, having the covariance

(34)

where is an arbitrary positive constant, and . This is
the Markov-1 separable covariance model, often used in image
processing for the analysis of transform coding [3, p. 508].

Assume that we perform a-level multiresolution SVD of
such an image, using blocks as in Section III-B. Then the
theoretical covariance matrix at level is the Toeplitz ma-
trix whose first row is . It is easy to see that the
largest eigenvalue of this matrix is , with corresponding
eigenvector . Hence, the smooth component is ex-
tracted by applying a equally weighted local average to

, followed by decimation in both dimensions. Hence, the pixel
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values in also have zero mean and form a wide-sense sta-
tionary random process. With some straightforward algebra, it
may be shown that the covariance function ofis

(35)

We see that also has a separable Markov-1 covariance.
Therefore, it follows that , for , are Markov-1 covari-
ance random fields. The Markov-1 structure is self-replicating
under multiresolution SVD.

This random field has perfect isotropy in the sense defined
above, since the largest eigenvector is at every level .
Moreover, the eigenvector matrix at every level is ,
where is the Haar matrix

and denotes Kronecker product. Hence the principal compo-
nents repeat exactly. However, it may be shown that the data
become more spherical asincreases. To see this, note that the
sphericity is determined by

where is the theoretical covariance matrix at level. Because
the Markov-1 structure is self-replicating, must be a Toeplitz
matrix with first row . Note that

, which is a monotonically decreasing function of
. From (35) we see that , from which

it follows that . Hence the ratio of arithmetic to geo-
metric means, which measures the departure from sphericity,
decreases as the level increases.

VII. EXAMPLES

A four-level decomposition was performed on each of the
four images shown in Fig. 2. The images “boats” and
“Barbara” are standard compression test images, and “grass”
is one of the Brodatz textures [14]. The image “checker” is a
synthetic image with uniformly distributed noise superimposed.
The noise amplitude is 10% of the maximum grey level. In each
case, the block size was , and mean correction was used.
The number of blocks at each level were ,

, , and .
The statistics , , and were computed to mea-

sure goodness of fit of, respectively, isotropy, sphericity, and
common principal components.1 As discussed in Section V, the
aim is not to perform formal hypothesis testing, but rather to
carry out exploratory data analysis.

A. Isotropy, Sphericity, and RPC

Table I shows the values of the isotropy statistic . For
comparison, the distribution with degrees of

1Matlab code and test images are available at http://www.labs.agi-
lent.com/personal/Ram_Kakarala/msvd.html.

TABLE I
VALUES OF ISOTROPYSTATISTIC �

TABLE II
VALUES OF SPHERICITY STATISTIC � . MULTIPLY BY 10

TABLE III
VALUES OF RPC STATISTIC �

freedom has its 95th percentile at . It can be seen that the
“boats” image fits the isotropy model well at levels 1, 2, and
4, and is at approximately the 99th percentile at level 3. The
“Barbara” image has a grainy appearance due to having orig-
inally been scanned, and hence is significantly nonisotropic at
level 1. However, at higher levels, the graininess does not play a
role, and hence the image data fits the isotropy hypothesis. The
rough texture in “grass” is far from isotropic at all levels, except
for the fourth. At this level, a block represents a
block in the original image, which contains the texturing ele-
ment. The “checker” image is isotropic at all levels due to its
simple square-wave structure.

Table II shows the values of the sphericity statistic with
.Forcomparison, the statistic with

degrees of freedom has its 95th percentile at. It can be seen
that the data are highly nonspherical, as all values exceed 500;
this implies a clear separation between smooth and detail compo-
nents. Similar tests for showed clear separations between
the detail components, with the exception of the “checker”
image. In that image, the first and second detail components
and , which correspond to the vertical and horizontal edge
structures, are nearly equal in magnitude. This is reasonable
given that the image is symmetric about a diagonal axis.

Table III shows the values of the RPC statistic . As
noted earlier, this statistic measures the extent to which the
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Fig. 4. Image “boat” has been compressed to 0.5 bits/pixel. (a) Image “D97” uses the Daubechies (9, 7) wavelet and (b) image “HAAR” uses the HAAR wavelet.

scatter matrix is diagonalized by , the eigenbasis at
the next lower level. For comparison, the statistic with

degrees of freedom has its 95th percentile at
. It can be seen that for the “boats” or “Barbara” images the

repeating principal components model does not fit the data. For
these images, it is truly necessary to change the decorrelating
filters at each level of decomposition, up to level 4. However,
for the synthetic “checker” image, and the “grass” texture
image, the fit is very good, indicating self-similarity between
levels 2 and 3 and levels 3 and 4.

B. Decomposition of MSE

The two images shown in Fig. 4 were obtained by com-
pressing the “boats” image using two different wavelets. The
image “D97” was compressed using the Daubechies (9, 7)
wavelet and the image “HAAR” using the Haar wavelet.
Both images were compressed to bits per pixel, using the
quantization scheme in the UICODER software package (see
[15]). The PSNR of image “D97” is dB, and the PSNR of
image “HAAR” is 30.1 dB. On closer inspection, the blocking
artifact in “HAAR” is visible.

Table IV shows values obtained from the decomposition of
MSE as described in Section V-D. It can be seen that of the
total MSE for “D97” lies in the residual, and while 94% is the
corresponding figure for “HAAR.” The blocking artifact that is
visible in “HAAR” shows up as the slightly higher error in each
of the edge components (vertical, horizontal, and diagonal), as
well as in the substantially higher residual.

VIII. C ONCLUSIONS

This paper has proposed a multiresolution form of the sin-
gular value decomposition for purposes of signal analysis and
comparison. Methods for interpreting and using the singular
values, eigenvectors, and subbands are discussed. In particular,
the concept of coding gain was interpreted as a statistic for
spherical principal components; the degree of self-similarity at

TABLE IV
DECOMPOSITION OFMSE INTO COMPONENTS

adjacent levels was measured by the fit of repeating principal
components; the mean squared error between two images was
shown to be decomposable along the subbands.

It is worth considering how to compare the multiresolu-
tion SVD to existing multiresolution decompositions, e.g.,
wavelets. Comparison needs a basis. The multiresolution SVD
provides an analysis tool to inquire into the properties (isotropy,
sphericity, self-similarity) of signals. The basis for comparison
is the extent that other transforms provide the same analysis
tool. With the mutiresolution SVD, we are able to talk in terms
of signal properties because we are using a signal-adapted
transform. Insofar as a nonsignal-adapted transform (such as
wavelets) is used, there is no comparison—perhaps a contrast.

However, a valuable aspect of nonadapted transforms is that
they provide a neutral basis for comparing different signals. To
the extent that the basis is “natural,” signals may be meaning-
fully compared. For example, the Fourier basis is natural in the
sense that it is motivated by physical considerations. There is no
similarly motivated basis for multiresolution decompositions,
and hence there will always be a multitude of approaches here.

We have not yet discussed the aspect of compression. Clearly,
the SVD is attractive as a compression tool, since it yields op-
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timal subrank approximation. However, a potential disadvan-
tage of the SVD is that the decorrelating filters do not neces-
sarily have linear phase. It would be interesting to investigate
a “biorthogonal” form of the SVD, if one exists. Moreover, the
effect of quantization on subrank approximation needs further
study.

Finally, the multiresolution SVD may be viewed as a type of
fast, approximate SVD. The relationships to other fast but ap-
proximate SVD algorithms, such as obtained by a Monte-Carlo
approach [16], and the extent to which the actual SVD may be
approximated by a multiresolution SVD, are topics deserving
further study.

APPENDIX

Equation (10) may be shown as follows. Letbe the
(square) matrix obtained by placing on top of rows
of zeros. Then thenonzerosingular values of are easily seen
to be exactly those of . We may now use the result [8, p. 178]
that for every pair of matrices, having the same dimensions

Now, letting and , and using the fact that largest
singular value of is 1, we obtain (10).
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