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Signal Analysis Using a Multiresolution Form of the
Singular Value Decomposition

Ramakrishna Kakarala and Philip O. Ogunbad®anior Member, IEEE

~ Abstract—This paper proposes a multiresolution form of the The SVD is closely linked with the concepts of principal com-
singular value decomposition (SVD) and shows how it may be ponent analysis (PCA) and Karhunen—Loéve transform (KLT).

used for signal analysis and approximation. It is well-known that The relationships among SVD, PCA, and KLT are discussed in
the SVD has optimal decorrelation and subrank approximation ! ’

properties. The multiresolution form of SVD proposed here detail elsewhere [1], [2, Ch. 8], [3], butitis useful to review the
retains those properties, and moreover, has linear computational concepts briefly here in order to establish relationships with re-
complexity. By using the multiresolution SVD, the following cent research. Let th®/ x N matrix X be interpreted as a data
important characteristics of a signal may be measured, at each ,4trix containing, for examplé/ measurements on each§f
of several levels of resolution: isotropy, sphericity of principal . dividuals. Th d ¢ i i tered b ina th
components, self-similarity under scaling, and resolution of !n viauals. 1he data matrix IS centere . y rem_OVIng e r_ne_an
mean-squared error into meaningful components. Theoretical in each row from elements of that row; in matrix terms this is
calculations are provided for simple statistical models to show X = X(Iy — (1/N)encly), wherely is the N x N identity,
what might be expected. Results are provided with real images to andey is the N x 1 vector containing all ones The’ﬁt is the
show the usefulness of the SVD decomposition. N . . " .
scatter matrixof the data, and following an eigen-decomposi-
Index Terms—Karhunen—Loeve transform, multivariate statis- i it may be written¥ X' = UAU*. whereA is the diagonal
tics, principal components analysis, singular value decomposition. i, . . ' .
matrix of eigenvalues. Thprincipal componentsre obtained
by the transformatiol” = I/*.X, showing thal” is the same as
|. INTRODUCTION X above, aside from mean removal. Since the scatter matrix is a
acalar multiple of the covariance matrix, we may also interpret
U as the KLT for thesamplen X. Obviously,U is not the KLT
for the population, ifX is sampled from a random vector.
X = USV. 1) The links between the multiresolution SVD that we intro-
duce below and other, well-known, multiresolution decomposi-

the “left singular vectors”) are the eigenvectors¥of*, V isa €mploying the system approach provided by Unser [4, p. 47].
N x M matrix whose columns (the “right singular vectors”fig- 1(@) shows how a sequencepstiimensional vectors, de-
are eigenvectors ot ‘X, ands is the M x M diagonal matrix NotedX (k), is generated from the input sequenté). Specif-
whose entries (the “singular values”) are the square roots of igally

corresponding eigenvalues BtX*. Letting X = U*X = SV*, B "

the SVD may also be writte@ = UX. As discussed in more X(k) =[akp) z(bp-1) - zlbp—p+D]. @)
detail in the following, this second form reveals a useful corsyppose that a filtered vector output sigigk) is constructed
nection with recent research in signal-adapted filterbaliks: py the formula

is essentially the decorrelating matrix obtained from an input

HE singular value decomposition (SVD) of a real-value
M x N matrix X, with M < N, may be written

signal’'s measured second-order statistics, Andontains the co e _
subband decomposition of the signal. This paper shows how, by X(k) = n_z;oo Hy X (k= n). (3)

recursively resampling and decomposing the largest rank-one

matrix, the SVD may be developed into a multiresolution signslere,H,, is a sequence gfx p matrices. With the x p transfer
decomposition. Furthermore, it describes how the multiresolfnction matrix being denote (z) = >, H,z~", we obtain
tion SVD thereby obtained provides useful information for arthe z-transform representation

alyzing, and comparing, signals. A
yend paring. =19 X(2) = H(=)X(2) @)

Manuscript received June 8, 2000; revised February 1, 2001. R. KakarVYg]ere‘X (z) and X (z) are, respectlvely, the-transforms of
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Fig. 1. (a) Signal(k) divided into nonoverlapping blocks of length each block contained in vectdf (k). (b) System diagram for a filtef/ (=), operating
on X (k) and producing outpuX (k).

where hy,(z) and hy,(z) are, respectively, the transfer func- 2) self-similarity of a signal at different scales is determined
tions of suitably constructed lowpass and highpass filters. Inthe by checking for repeating eigen-decompositions;

wavelet case, further levels of decomposition are obtained by3) mean squared error (MSE) between two signals is decom-
recursively applying this filterbank to the output of the lowpass posed into a sum of MSEs over the principal components.

filter hu,(z). o In Sections VI and VII, examples are given of signals and im-
ASVD may also be cast in this framework. Suppose we grolﬂges ana'yzed using the proposed techniquesl
M successive column vector§(k) into ap x M matrix, de-

notedX . Then, using (3) witt,, = U* forn = 0, andH,, =0
otherwise, we obtain tha = Ut X, whereX is thep x M ma- Il. NOTATION AND CONVENTIONS

trix whose columns aré{ successive vectotk (k). If U is the Throughout this paper, the following notation and conven-

matrix of left singular vectors of, thenX = UX is Simply tions are used. AV element row vector is indexeld(1), .. .,
a form of SVD, as mentioned above. Therefore, the SVD m%)(N)] and similarly aM x N matrix X is indexed

be viewed as a filterbank whose transfer function is a constant
matrix, i.e.,H (») = U*, where the matrix contains the signal’s

left singular vectors. The multiresolution SVD described below z(1,1) «(1,2) - (1, N)
essentially repeats this construction to obtain successive levels  x — (2, 1) . :
of decomposition. 2(M, 1) o a(M, N)

The idea of using the left singular vectors to filter the input

signal has been proposed in other papers on filterbanks [4]-[Fhekth row of matrix.X is denotedY (%, -), and thekth column
Those papers focus on how “optimal” filters may be designgd denotedy (-, %). The methods described in this paper are for
for energy compaction, where optimality is defined as an epsal-valued signals, but they extend to complex-valued signals
semble-averaged measure. In this paper, we focus not on filigrreplacing every instance of transpose with conjugate-trans-
design, but rather on how a multiresolution SVD may be coppse,
structed and, more importantly, how it may be interpreted. OurEvery positive semidefinite matri% has an eigen-decompo-
approach focuses on deterministic signals, although the lik&dition w = UAU*, wherel is an orthogonal matrix of eigen-
hood statistics proposed below implicitly assume normal diStU'ectors, and\ is the diagonal matrix of eigenvalues arranged in
butions. decreasing order. Noting thatifis an eigenvector ofV with
The organization of this paper is as follows. In Section lllgigenyalue), then so is-u, we henceforth assume without loss
we show how the SVD may be developed into a multiresolutiqf generality that the first nonzero element of each eigenvector
analysis. The computational complexity of this decompositiqg positive.
is analyzed in Section IV. In Section V, the main results of this Henceforth, a matrix denotefl (possibly with subscripts)
paper are presented: represents a diagonal matrix of singular values. The singular
1) concept of coding gain is interpreted in terms of the stamalues are writtes(k) for 1 < k& < M, or sometimes(X; k)
dard likelihood ratio for sphericity of principal compo-when the matrix needs to be identifiegingular values are al-
nents; ways assumed to be in arranged in decreasing order so that
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s(1) > s(2) > --- > s(M). Note that the SVDX = USV? mean to the ranky approximation toX, i.e., forming
may be written as a sum of outer products X' 4 71, gives a better approximation to the original
o matrix X than simply usingX (@ since
X=) s(k)U(C. kV(, k). ©) (@) - v@
kz_:_l IX = (X7 +D)llr = X =X “|lr < X - X9 5. (12)
Each outer produdt/(-, k)V (-, k)! is a rank one matrix, and Hence, from the viewpoint of approximation, it is better
the partial sum to remove the mean, form the ragkapproximation to
q the corrected matrix, and add the mean back at the end.
x(@ — Z s(UC, RV (-, k) (6) In [10, p. 593], it is shown that the columns &7 +7T
e ’ ’ are the optimuny-dimensionakubspacepproximation

) ) ] to the corresponding columns 4f.
has rank; for ¢ < rank(X). This partial sum has an important

approximation property [9], which may be described as follows.
The Frobenius norr - || of X is defined as

[ll. M ULTIRESOLUTION FORM OF THESVD
This section describes how the multiresolution SVD may be

M N constructed. Recall that in the dyadic wavelet transform, the
IX||F = Z Z lz(k, £)%. signal is filtered separately by low and high pass filters, and the
k=1 £=1 output of each is decimated by a factor of two. This procedure

is recursively repeated on the decimatedpassoutput, until
the desired level of decomposition is achieved.

The basic idea behind the multiresolution SVD is to replace
X —Y]|r>|X - X(q)HF filtering with SVD at each level of approximation. The idea is
now described, initially for one-dimensional (1-D) signals, and
=Vs(X;q+ 12+ +s(X;M)2. (7) for the dyadic case. Extensions to higher dimensions, and to
p-adic decompositions, are described subsequently.

Then, for any matrixt” with rank(Y) = ¢ < rank(X), we
have that

In this senseX (@) provides the best rankapproximation taX .

Note that (7) implies A. One-Dimensional Case

I1X||F = Vs(X;1)2+ -+ s(X; M)2, (8) Let X = [«z(1), ..., (V)] represent a finite-extent, 1-D
i _ . signal. Assume thaV is divisible by2” for someL > 1. Letthe
The N x N row centeringmatrix Hy = In — (1/N)enel,  data matrix at the first level, denotedl, be constructed so that

which appeared in Section |, is symmetric and idempotent, singeqp, row contains the odd-numbered samples, and the bottom
HyHy = Hy. Itis easily shown thatthe singular valuestt: v contains the even-numbered samples

ares(1) = --- = s(N —1) =1, ands(N) = 0.
Suppose now thak' = X Hy is the mean corrected matrix ¥ = z(1) x(3) - a(N-1) (13)
for someM x N matrix X, with A/ < N. Let the SVD ofX 1= z(2) z(4) - z(N) )

be denoted\ = AS(X)B?, with A the eigenvector matrix for

XX'; §(X) the singular value matrix; anl the N x M matrix TUhebcorrﬁspopding centered ma;ri?()é_l :thHN/2- Let
of eigenvectors ot X, As in (6), let . be the eigenvector matrix bringing the scatter matrix

T = Ylffi into diagonal form:U}T1U/; = S%, where
q

2 e 2 2 i

w - , 57 = diag{s1(1), s1(2)"} contains the squares of the two

X\ _ Z s(X5R)A( k)B(-, k)*. ©) singular values, withy1 (1) > s1(2). Now let X; = U{X7, so
k=1 that X, = U X;.

From (7) it follows thafx @ is the optimum rank approxima- The top row of.X;, namely.Xy (1, ), contair_ls the principal
tion to X. Suppose now that the SVD &f is X = I/SV* and component that corresponds to the largest eigenvalue, and may
that X (@ is obtained as in (6). Using the results in [8, Ch. 3], wB€ considered the “smooth” or “approximation” component

may establish some important facts about the respective SVAJEN pairs of elements i are analyzed. The bottom row con-
of X and.X. tains the “detail” component that corresponds to the smallest

- eigenvalue. Let; = X (1, -), and¥; = X;(2, -) represent
1) Fork =1, ..., M, we have the smooth and detail components, respectively. Note®hat
S(X; k) < s(X;k). (10) and¥, are uncorrelated since the rows.®f have zero mean,

and moreover
A proof is provided in the Appendix.

2) From (10), it follows that mean correction generally re- leq =57, (14)

duces the error in rankapproximations Hence the signal has been decomposed into uncorrelated

IX - Y(Q)HF <X - X(q)||F~ (11) smooth and detail components.
- The next level of the multiresolution SVD repeats the proce-
3) LetT = (1/N) X enely be the mean matrix (constantdure described above, but now using the smooth compdnent
along rows). Then from (11), it follows that adding then place ofX. This procedure is repeated recursivélyimes.
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The procedure may now be described formally. LéEhe singular values of this matrix asg(1) = /40, s1(2) = 0.
do(1, ) = X, so that the initial “smooth” component is theThe corresponding eigenvectors &fg(-, 1) = (1/v/2)[1, 1]%,
original signal. For each levé| the vectord, hasN, = N/2¢ andU.(-, 2) = (1/v/2)[1, —1]*. The transformation (18) pro-

elements, which are denoted as follows: duces
Sy = [Pe(1), ..o, Pe(No)]- X, = L j-6 -2 2 6/
/2L 0 00 o0
The L-level dyadic SVD is defined by the following equations. R
For{=1,..., L —1,set The next level operates dn = X (1, -) = %[—6, -2, 2, 6],
be—1(1) de—1(3) -+ o1 (2N, — 1) and produces (with, X5 found to be a constant matrix with
X¢= (15) all entries equal to 16, arld, found to be the same
be-1(2) de1(4) - P 1(2N) g ? 4s)
X, =X.Hp, (16) X, = [_3 3} .
T, =X X, = U S2U? 17) .
R o Hence, the complete two-level. (= 2) SVD is
X, =UlX, (18)
~ ~ [_4a 4]’ {[0’ 0]’ [Ov 0’ 0’ 0]}’
D =Xe(1, )y We=X(2,). (19) 11 1] 11 1
X—-<\v2 |l -1yl -1])°

Note that in (17), we require the singular values to be arranged f 4 4
so thatsg(1) > s,(2). {_ {_ } ; {FH

A complete signal representation may be obtained from the v2 [0 0
dyadic multiresolution SVD as follows. To fully specify, it is The procedure described may be generalized in several
sufficient to store the lowest resolution smooth composent yays. First, it is possible to decompose the detail component
and the detail components,, for £ = 1, ..., L. In addition, y, at each level into two further components, using the same
the mean vectorg, = (1/N)¢ Xcen,, and the eigenvector ma- method as for the smooth component. In this manner a general
tricesl/, must also be stored. Hence, one may write the dyagignsformation (similar in spirit to the wavelet packet approach
multiresolution SVD as the following transformation: [11]) is obtained. Second, one may divide the original sighal

I I I into nonoverlapping blocks of length> 2 (assuming thalv is
X = { @, Wi, Ui, {nedia ) 20) " givisible bypL). At each level, @ x p scatter matrix is formed,

Itis easy to see hoW may be reconstructed from the right han@"d it eigenvector matrik’ is employed to decorrelate the
side, since each of the steps in (15)—(18) is reversible. centgred block matrix using (18). TI@epnnmpal components
The same procedure may be applied without mean removptained may be ordered by the eigenvalue; the component
Although mean removal improves approximation (see gegarresponding to the maximum eigenvalue is essentially the
tion Il), reasons tonot remove the mean include: to reduceSmMooth” component, and this may be further decomposed to
computation, and to resolve the mean-squared error betwd@mn the next level. Combinations of these generalizations are

two signals into meaningful components (see Section V-[}!S0 possible.
Note that without mean removal, the component&pfre not
necessarily uncorrelated, only orthogonal.

A useful inequality for singular values at different resolution The multiresolution SVD may be formulated in two and
levels is higher dimensions. We show here in detail how the formulation

works in two dimensions, and indicate briefly the extension to
ser1(1)? 4 5041(2)% < s0(1)° (21)  higher dimensions.

. L . Suppose thak is aM x N matrix. As in the 1-D case, we
if mean correction is used. If the mean is not removed, th%%compose: into p x ¢ blocks, and analyze the covariance of
equality is obtained in (21). This inequality follows from (8),th '
(10), and (14).

To illustrate the points above, we provide the following e

ample. The first level of decomposition proceeds as follows. Divide

Example 1: Let X be the eight-element vectft, 2, 3, 4, . : .
. . X into nonoverlapping x 2 blocks, and arrange each block into
5, 6, 7, 8]. We compute its two-level dyadic SVD as follows: .
We have that a4 x 1 vector by stacking columns to form the data matXix.

The blocks may be taken in transpose raster-scan manner, that

B. Two and Higher Dimensions

e blocks. Whiles, ¢ may be chosen arbitrarily, it is convenient
to work withp = ¢ = 2, which is perhaps the smallest truly
*wo-dimensional (2-D) block format.

Y, = [1 3 5 7} is, proceeding downward first, and then to the right. Specifically,
1712 4 6 8" in terms of the elements of, the first data matrix is shown in
. . the equation at the bottom of the next page. The eigen-decom-
The scatter matrix of the columns is position of the4 x 4 scatter matrix i§; = Ylftl = U, S2U¢,

— =t 20 20 in which we choose to have the singular values arranged in de-
T =X1X, = .

20 20 creasing orders; (1) > s1(2) > 51(3) = s1(4).
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As in the 1-D case, leK, = U*X . Note that the top row  Example 2: The image “boats” in Fig. 2 is used to compute
of X; corresponds to the largest eigenvalue, and therefore nthg two-level SVD that is shown in Fig. 3. The transformation
be considered the “smooth” component inherent inZhe 2 matrices are as follows:

blocks. The remaining rows contain the “detail” components, r0.49 052 048  0.517
which may correspond to edges, or texture, in an image for ex- 050 048 —052 —0.49
ample. The rows are orthogonal (and hence uncorrelated be- U, = _ _
cause they have zero mean), sidéeX! = 52. 049 —-048 051 -0.50

Note that the elements in each row may be rearranged to form L0.50 —0.52 —0.49 0.49]
aM/2 x N/2 matrix. To proceed to the next stage of the de- _ -
. . 0.49 0.56 0.44 0.49
composition, let; denote thel//2 x N/2 matrix formed by 0
rearranging the rouX; (1, -) into a matrix, by first filling in the Uy — 050 —-043 056 -0.49
columns, and next the rows, i.e., as shown in (22) at the bottom 2 0.49 044 —0.56 —0.49
of the page. Essentiallyz; forms the “smooth” image compo- 050 —054 —043  0.50

nent inherent in the collection @f>§ 2 blockg. Ina simjlar way, )
each of the three remaining rows; (2, -), X.(3, -), X1(4, -) Each of the columns of the above matrices may be rearranged

into a2 x 2 spatial filter, according to the pixel elements that
they operate on. For example, the columng/pfmay be rear-

may be rearranged int/ /2 x N /2 matrices, which we denote
i L @ (3)
respectively bylr;™, w;*', andWw;™. ; . .
The next level of the transform now proceeds as above, 6&(‘980' Into th? ;,2 f||';ers shoan tzlelow [from left to right,
with X replaced by®,. The process is repeated recursively forcarrangements 105 D, Ui 4)]
L levels, using equations analogous to (15)—(18). The complete {0.49 0.49} {0.52 —0.48}

decomposition may be stated as follows: 0.50 0.50 0.48 —0.52
{ 0.48 0.51} [ 0.51 —0.50}
X = o, (0, v, Oy UGy A |- —052 —049)"  [-049 049

(23) Note thatU;(-, 1) is a local average (smoothingd/i(-, 2)

As in the 1-D case, the decomposition may be performésl a vertical edge filterl/1(-, 3) is a horizontal edge filter,
without mean removal, with the same benefits and drawbacksad U (-, 4) is a diagonal edge filter. A similar interpretation
Furthermore, the inequality (21) extends to two dimensionsiay be given to the columns éf,. Note that for eacH, the
with leftmost eigenvectot/;(-, 1), which corresponds to the largest

eigenvalue, is simply a local averageence, for this irage,
ser1 (1) 4+ se1(4)? < se(1)2. (24) the “smooth” component®; and ¢, are obtained as a local
average ofadjacent pixelskFurthermore, the detail components
Again, equality is obtained if mean correction is not employe@If.gk) for k = 1, 2, 3 essentially contain one of the following:
The following example illustrates the concepts previouslyorizontal edges, vertical edges, or diagonal edges. The pattern

discussed. is visually apparent in Fig. 3.
z(1,1) «(3,1) (M —-1,1) (1, 3) (M -1, N—-1)
P x(2,1) z(4,1) x(M, 1) x(2, 3) (M, N —1)
YT 2) 2(3,2) (M —1,2) z(1,4) a(M —1, N)
x(2,2) z(4,2) x(M, 2) x(2, 4) x(M, N)
[ a1, 1) ge<1,—+1> §:1<1,g<%—1>>_
o, — #1(1, 2) : : 22)
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"Boats”

“Orass™ “Checker”

Fig. 2. Four test images used in the paper.

The emergence of edge filters in the eigenvectors in this edimensions, we may use blocks havimglements in each di-
ample is an interesting phenomenon. It is essentially causednsion, e.g3 x 3 x 3 in three dimensions; of course, this may
by two factors: 1) the existence of positive correlation betwedre generalized to any size blocks.
neighboring pixels and 2) the use oR2ax 2 block size. The
first factor, positive correlation, causes the largest eigenvalue’s
eigenvector to have all positive entries (the reason why is dis- IV. COMPLEXITY ANALYSIS
cussed in detail in Section V). Given that, the remaining eigen- ) ] )
vectors have to have at least one negative entry in order to b&tere, we show that g-adic multiresolution SVD ha®(NV)
orthogonal to the largest eigenvector. Now, the second factof@MPlexity for 1-D signalsX' = [z(1), ..., z(NV)]. A similar
2 x 2 block size, means that the remaining eigenvectors are 8RProach to the one presented below shows that in two-dimen-
ther edge or corner filters, depending on whether they have gns. the complexity is also linear in the number of samples
even or odd number of negative entries. The emergence of edigi&els). A count of the number of arithmetic operations is given
rather than corner filters for this particular image indicates thi& provide a more precise analysis of the computational burden.
the strength of edges exceeds that of corners in this case. ~ In the p-adic decomposition, each level uses onljp of

The same remarks concerning generalizations of the multiréde number of samples as the next lower level. The maximum
olution SVD made in the 1-D case are applicable in two dimepumber of useful levels of decomposition with a length
sions. Clearly, we may use any size block, and moreover, wgnal isL. = log,(N) — 1. Note that at levelog,(N), the
may choose to decompose additional components in additimw@trix Ylogp(N) contains only zeros after mean removal, so
to (or instead of) the one having largest eigenvalue: I 2  this level is not actually necessary.
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Fig. 3. Two-level SVD of the image “boats” is shown. The subimages are arranged in clockwise order of decreasing eigenvalue. To aid visibilityages sub
have been contrast-stretched so that the pixel values fit into the range @55. Moreover, the absolute value of the edge images is shown since the negative
values are as significant as the positive ones.

Suppose that has lengthV = p+1. We count the number  LetC, = Q, — p(p + 1)/2 be the cost independent &f.
of operations to computé’l. To form the centered block matrix It is easy to see that computing the next level of decomposition
X1, we note that each row hag/p elements. Removing the requires exactly3p + 2)N/p + C,, operations, and in general,
mean in each row requirésV/p — 1) additions, one division, the/th level require$3p+2)(N/p*~!)+C, operations. Hence
and N/p subtractions, for a total dfN/p operations. Hence, the total cost fol levels is
the total cost for alp rows is2/N operations. L-1

Next, to compute each element of thex p scatter matrix (3p + 2)% +C, < N3p +12 + LC,
11, we need a total oV/p multiplications and N/p — 1) addi-  ¢=1 p 1-—-=
tions. Since the scatter matrix is symmetric, we need compute p
only p(p + 1)/2 entries. Hence, the total cost of computing the 37 +2p
scatter matrix from¥X; is (2N —p)(p+1/2) operations. Diago- :NPT + (log, (N) = 1)Cy.
nalizing the scatter matrix may be done in a finite number of op- (25)

erations, which we denot@,,. A rough estimate i§), = 10p® ) o
for p > 2 (estimated using the “flops” counter in MATLAB), For large.V, the right hand side is bounded above &7 N,

which isO(p?); see also [3, p. 165]. Computing; requiresp which is a linear function ofV. Hence, the overall complexity
multiplications angy — 1 additions for each of th&/ elements, 'S O(N). _ . .
giving a total of N(2p — 1) operations for the entire matrix. ~FOF comparison, atv-point FFT require2/ log, (V) op-

Adding all of these together, we find that the first level requiredfations if ' is a power of two. FotV = 256, the FFT's cost
slightly exceeds the cost of computing the dyadic SVD up to

+1
2N + (2N _p)pT FN(Ep -1+ Q, seven levels.
+1
=N@G3p+2)— 1% +Q, V. INTERPRETATION OFDECOMPOSITION

The p-adic multiresolution SVD of a signal provides three
operations. matrices at each level: the singular value maffixthe decor-
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relating filter matrixl/,;, and the orthogonal subband matripothesis test, then we would reject the isotropy model atithe
Xé. Each of these sets of matrices provides useful informatitevel of significance ifl'1so exceeds thél — «) x 100th per-
about the signal being analyzed. The singular values, for eentile of the corresponding? distribution.
ample, are proportional to the subband variances: the rows of
X, have zero mean, and furthermore their covariance matrixBs Coding Gain as Test of Sphericity
(1/N) X, X{ = (1/N) S7. The objective of this section isto  Syppose that a/-channel filterbank is employed to de-
describe how the singular values, eigenvectors, and subbapgtpose a wide-sense stationary (WSS) input process. Let
may be interpreted and utilized. o2 denote the (ensemble) variance of the output of ikt
The value op discussed in this section refers to the number @hannel, fork = 1, ..., M. The coding gain of a filterbank
elements in each block, regardless of dimension. For exampe, Eq. (3)] is defined as the ratio of two errors: the numerator
if the SVD is computed using x 2 blocks on an image, thenjs the mean-squared reconstruction error when using direct
p =4 gquantization (PCM); and the denominator is the corresponding
This section makes use of the log likelihood ratio for megsror when a filterbank’s output is quantized to the same bit
suring the goodness of fit of data to a model. Although the likeate. Modeling quantization as an additive WSS process, and
lihood ratio may, in principle, be formulated for any distributionassuming optimal bit allocation, it can be shown that coding

much Simplification results if the data are n0rma||y distribute%ain is the ratio of the arithmetic mean and geometric means
Clearly, there are many instances where data are not normally

distributed, and the application of the specific likelihood ratio 1 < 9

derived under the normal assumption is questionable. However, M Z Tk

itis still worthwhile to determine the form of the likelihood ratio Gspe = =L AL (27)
for the normal case, because the form itself gives insight into M )

the characteristics of the data that are worth measuring, such as kl_[l %k

coding gain (see Section V-B).
The well-known inequality between the arithmetic mean and the
A. Eigenvectors as Decorrelating Filters geometric mean shows th@dg g > 1, with equality if and only

It is reasonable to wonder whether the principal componeifmfhe variances are all equal. Filterbank design generally seeks

with the largest singular value is the “smooth” component, 4 maximize coding gain. . , . .
it is called in Section I11. Indeed, this terminology is only ap- The relationship between coding gain and the multiresolution

propriate if the largest component eigenvector, which is the first/ D IS now established. Suppose that at some levtap-adic

columni/y(1, -) of the decorrelating matrix, is a lowpass filterSVD decompositionp — k of the measured singular values in
matrixS? are nearly equal. Under that suppositiork i 0

This need not be the case in general. However, it does octif

when all of the entries of this eigenvector have the same siéh?” all ?f the“singL_J!,ar values are nearly equal, and therefore
using the sign convention in Section II, we may suppose all thgnooth and “detail” components are not clearly identifiable

entries to be nonnegative, and the corresponding filter is thefgthe signal. In such cases, one has to decide either to further
fore lowpass. decomposall of the components or none at all. This is par-

An important case wheiV,(-, 1) is positive is when all of ticularly relevant in applications where the number of levels of
the entries irl; are positive. Then, the Perron—Frobenius th&l€composition are not known beforehandk 1t 1, then the
orem [12, p. 542] states that the largest eigenvalue has algebl@it? — & detail components, say, are equally significant, and
multiplicity one, exceeds in modulus all the other eigenvalue¥ould be treated in the same manner in further processing. The
and moreover has an associated eigenvector whose entriesSgtgdard multivariate test for equally significant principal com-
all positive. Hence, for positively correlated data, we are guaf9Nents (assuming normally distributed data) is now described
anteed that the largest principal component is unique, and is E-PP- 235-236]. Data with equally significant principal com-
tracted by a positively weighted moving average. ponents are often described gggherical and hence the corre-

Example 2 shows that the leading eigenvector is neaﬁponding test is known as a test of sphericity. For a data matrix
(1/2) ¢4 for bothU; andUz. In general, a measure of the data’§avingN; columns, the log likelihood ratio is
isotropy is the extent which the constant vedtor,/p) e, fits 1 Z se(q)?

[4

as an eigenvector, corresponding to the largest eigenvalue, of 2 + 11 p—k i
the sample covariance matrix [13, p. 34]. Assuming normally'sp = <N4 -~ ) (p—Kk)ln g Ty
distributed data, the goodness of fit may be measured from the p
likelihood ratio II 50?2
I'so = N, <S€(1)26tTle + #etT ep — 2) (26) . (28)
ISO — {V¢ P pte D 84(1)2]) pLeCp .

It can be shown thdfsp is asymptotically distributed as@
Here,N, = N/p* for length NV data, andly, s,(1) are, respec- distribution with1/2 (p—k+2)(p —k — 1) degrees of freedom.
tively, the scatter matrix and the largest singular value aftthe  The likelihood ratio is based on the ratio of the arithmetic and
level. It is known that, if the isotropy hypothesis is valid, thegeometric means of the measured squares of singular values. As
I'iso is asymptotically distributed ag® with » — 1 degrees of mentioned above, these are proportional to the measured vari-
freedom (see [13, p. 63]). If we were attempting a formal hyances of the subbanddence, for normally distributed data,
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the optimal statistic for determining whether smooth and detdiie same way thak; is formed from.X), we construct a new
components can be usefully separated is the measured codimagtrix, denoted’, by the rule
gain. - .
Y =Uuiv.
C. Self-Similarity _ o Note that the rows df; are not necessarily orthogonal, siri¢e
The standard wavelet transform requires application of thegerived from the data ifY . However, we have transformég
same filterbank at each level. If the data are self-similar By emp'oying the same Spatia| filters as used to Ob&jnand
different scales, then it is indeed appropriate to use the safierefore, we may compare corresponding components. This al-
decorrelating filterbank. However, it is an important questiogws us to break up the MSE into the MSE within the span of
of how to test for self-similarity. One approach is to formulate{,  and the MSE in the orthogonal complement of the span.
the problem as one of common principal components (CP@he MSE within the span is simply the closest approximation
analysis [13]. In CPC, tests are constructed for the hypothegis; from linear combinations of the? orthogonal components
that &k sample covariance matrices have the same basis &fibbands) inX;, and the MSE in the orthogonal complement
eigenvectors. In our terminology, this is equivalent to thg simply the residual.
hypothesis that there exists a single orthogonal mat#ix  The normalized orthogonal components lie in the columns of
which can diagonalize each of the scatter matrices up to kevelhe V; matrix appearing in the SVIX; = U151 V{. Note that
WAT,W = 52, 0=1,.. .k 29 W= S7LX,. Now, the projection of the errak; — ¥; onto

. ) . ~ the span ofX is obtained from theq x pq matrix Pz, which
If this hypothesis holds, then the data may be said to have simil@iyefined as

covariances at different levels of scale, which is an indication of

“self-similarity.” Pe = (X - Y)(W) (32)
One difficulty with this hypothesis is that the scatter matrix

at level?, namelyT;, depends on the choice b%_; to diago- The projection onto the orthogonal complement of the column

nalize the scatter matrix at the next lower levBl, ;. There is space of; is determined by the matriky, — V1 V/. Hence. the

no easy way to formulate this relationship. An alternative, aridtal error may be written as the sum of components

simpler, approach is to ask whethér_; also diagonalizeg; . ~

at a given levet. If this model, which we call the model of re- IX = Y1I7 = 1Psll7 +1(X0 = YO Un, = ViV)IE- (39)

peating principal components (RPC), is correct, then we havghe residual MSE is in the rightmost term. Noting that

Ut T,U; 4 = S2. (30) |Pel|3 = trace{PgPL}, we may examine the magnitude

) o . of errors in the symmetric matri¥ = PgP},. The diagonal

l_Jsmg standard mu_ltl\_/anate tec_:hnlql_Jes [13, pp. 67-68], the I@gtries of E, denotede(1, 1), ..., e(pg, pq), reveal the mag-

likelihood ratio statistic for testing this model is seento be  nhitudes of error betweel and the original imageX, divided

det(diag(U}_,TeUs—1)) among the components df. For examplee(1, 1) measures

detT; (31) the part of the MSE which lies in the smooth component

) A 1, ande(2, 2) is the error in¥y, the most significant detail
wherelV, is the number of columns iX,. The general theory of component, and similarly for the remaining elements.
likelihood ratios [2, p. 124] shows th&tzp¢ is asymptotically
distributed as¢? with p(p — 1)/2 degrees of freedom.

I'rpc = Nelog

VI. CALCULATIONS FOR THE MARKOV-1 MODEL

D. Error Analysis To provide insight into the examples that follow in Sec-

Both peak signal-to-noise ratio (PSNR) and mean-squar@?ﬂ VII,. we examine.how the muItiresoIL_JFio_n S_VD performs
error (MSE) are widely used in image compression researfdj @ simple, but widely used, probabilistic image model.
as simple global measures of fidelity. Obviously, these globaHPPose that we apply the decomposition to an image
measures of error do not capture either the true nature or ¥Maose pixel values are sampled from a zero-mean, wide-sense
visibility of the errors. Of great interest is how the error iStationary random field, having the covariance
distr_ibuted among the smooth, edge and t(_axture regions of r(m, n) = cpm Il (34)
the image. For this, we may employ the multiresolution SVD,
without mean removal. wherec is an arbitrary positive constant, abd p < 1. Thisis

LetY be the result of lossy compression applied ftda< NV the Markov-1 separable covariance model, often used in image
imageX . The MSE betweeX andY is simply(M N)™!|| X — processing for the analysis of transform coding [3, p. 508].
Y'||7.. Suppose that the multiresolution SVD&fis computed, ~ Assume that we perform &-level multiresolution SVD of
without mean removal. LeX; be the first data matrix (with such animage, usirgjx 2 blocks as in Section 1lI-B. Then the
dimensionspg x M N/pq for ap x ¢ block decomposition). theoretical covariance matrix at lewel= 1 is the Toeplitz ma-
Now, realizing that the smooth and detail compondntsand trix whose first row isc[1, p, p, p?]. It is easy to see that the
\IJJ(L’“), fork =1, ..., pg— 1, are orthogonal, we may break thdargest eigenvalue of this matrix{$ + p)?, with corresponding
MSE into additive constituents along each of the componentgigenvector1/2) 4. Hence, the smooth componedt is ex-

To do this, letl/; be the eigenvector matrix diagonalizingracted by applying & x 2 equally weighted local average to
X, X}. Defining Y; to be the data matrix formed froii (in X, followed by decimation in both dimensions. Hence, the pixel
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values in®; also have zero mean and form a wide-sense sta- TABLE |
tionary random process. With some straightforward algebra, it VALUES OF ISOTROPYSTATISTIC I'1s0
may be shown that the covariance functionbgfis
| level\image ‘ boat ’ barbara | grass | checker
1 + m n ]
ri(m, n) = ¢(1 + p)? <¥) . (35) 1 6.3 | 74.4 |209.8| 2.74
We see thatd; also has a separable Markov-1 covariance. 2 7.2 5.7 76.6 2.26
Therefore, it fo_IIows thatb,, for £ > 1, are Ma_rkov—l cov_ari—. 3 13.7 1.7 17.5 2.13
ance random fields. The Markov-1 structure is self-replicating
under multiresolution SVD. 4 5.2 6.4 2.5 4.18
This random field has perfect isotropy in the sense defined
above, since thg largest eigenvectoflig2) e, at every level. TABLE Il
Moreover, the eigenvector matik at every level isUg@Uyy, VALUES OF SPHERICITY STATISTIC ['sp. MULTIPLY BY 102
whereUy is the Haar matrix
1 {1 1} level\image || boat | barbara | grass | checker
v2 |l —1 1 541.4 | 289.0 |220.2| 990.0
and® denotes Kronecker product. Hence the principal compo- N 111.9 93.5 240 | 315 97

nents repeat exactly. However, it may be shown that the data
become more spherical &sncreases. To see this, note that the 3 23.0 25.6 2.8 96.1
sphericity is determined by

4 4.8 4.9 0.5 28.1
. . :

1 2

I S[(/ﬂ)

* kz::l Ltrace (Cy) TABLE Il

. 1= Gt (05)1/4 VALUES OF RPC SATISTIC ['rpc

<k1_[ 5t (k)> level\image | boat | barbara | grass | checker

=1
whereC; is the theoretical covariance matrix at le¢eBecause 2 28.5| 21.6 |60.9| 2.54
the Mark_ov—ll structure is seIf—repI|20at|r@f must be a Toeplitz 3 411 69.7 3.3 5 78
matrix with first row c¢[1, p¢, pe, p7]. Note thatdet (C;) =
ct(1 — p?)?, which is a monotonically decreasing function of 4 53.9 | 21.6 3.9 4.78

p¢. From (35) we see that;11 = pe(pe + 1)/2, from which

it follows thatp,+1 < p¢. Hence the ratio of arithmetic to geo-
metric means, which measures the departure from spheric
decreases as the level increases.

{ﬁedom has its 95th percentile’as1. It can be seen that the
“boats” image fits the isotropy model well at levels 1, 2, and
4, and is at approximately the 99th percentile at level 3. The
“Barbara” image has a grainy appearance due to having orig-
inally been scanned, and hence is significantly nonisotropic at

A four-level decomposition was performed on each of theve| 1. However, at higher levels, the graininess does not play a
four 512 x 512 images shown in Fig. 2. The images “boats” angble, and hence the image data fits the isotropy hypothesis. The
“Barbara” are standard compression test images, and “grag§igh texture in “grass” is far from isotropic at all levels, except
is one of the Brodatz textures [14]. The image “checker” is far the fourth. At this level,  x 2 block represents #6 x 16
synthetic image with uniformly distributed noise superimposegiock in the original image, which contains the texturing ele-
The noise amplitude is 10% of the maximum grey level. In eaghent. The “checker” image is isotropic at all levels due to its
case, the block size wasx 2, and mean correction was usedsimple square-wave structure.
The number of blocks at each level wekg = 1024, N3 = Table 1l shows the values of the sphericity stati$tig- with
4096, N2 = 16 384, andNy = 65 536. k = 0. For comparison, thg? statistic with(p+2)(p—1)/2 = 9

The statisticd"so, I'sp, andl'cpc were computed to mea- degrees of freedom has its 95th percentilesa®. It can be seen
sure goodness of fit of, respectively, isotropy, sphericity, aRHat the data are highly nonspherical, as all values exceed 500;
common principal component#s discussed in Section V, thethjs implies a clear separation between smooth and detail compo-
aim is not to perform formal hypothesis testing, but rather {gents. Similar tests for > 0 showed clear separations between
carry out exploratory data analysis. the detail components, with the exception of the “checker”
image. Inthatimage, the firstand second detail compor\bﬁs
and\Iff), which correspond to the vertical and horizontal edge

Table | shows the values of the isotropy statistigo. For  structures, are nearly equal in magnitude. This is reasonable
comparison, they® distribution withp — 1 = 3 degrees of given thatthe image is symmetric about a diagonal axis.

IMatlab code and test images are available at http://www.labs.agi- Table 1ll shows the values of the RPC statistigpc. As
lent.com/personal/Ram_Kakarala/msvd.htm. noted earlier, this statistic measures the extent to which the

VIl. EXAMPLES

A. Isotropy, Sphericity, and RPC
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a7 HAAR

Fig. 4. Image “boat” has been compressed to 0.5 bits/pixel. (a) Image “D97” uses the Daubechies (9, 7) wavelet and (b) image “HAAR” uses the HAAR wavelet

scatter matrixZ;4, is diagonalized byl/;, the eigenbasis at TABLE IV

the next lower level. For comparison, the statistic with DECOMPOSITION OFMSE INTO COMPONENTS
p(p — 1)/2 = 6 degrees of freedom has its 95th percentile at
12.6. It can be seen that for the “boats” or “Barbara” images the
repeating principal components model does not fit the data. For @, (smooth) 0.01| 0.99
these images, it is truly necessary to change the decorrelating
filters at each level of decomposition, up to level 4. However,
for the synthetic “checker” image, and the “grass” texture U, (horizontal edge) || 0.06 | 0.81
image, the fit is very good, indicating self-similarity between
levels 2 and 3 and levels 3 and 4.

component\image D97 | HAAR

¥, (vertical edge) |[0.11| 0.73

¥; (diagonal edge) | 0.22| 1.27

.. Residual 37.1 59.4
B. Decomposition of MSE

The two images shown in Fig. 4 were obtained by com- Total MSE 37.5] 63.2

pressing the “boats” image using two different wavelets. The

image “D97" was compressed using the Daubechies (9, g&'acent levels was measured by the fit of repeating principal
wavelet and the image “HAAR” using the Haar wavelet, ) y P gp P

. ) . . components; the mean squared error between two images was
Both images were compressedté bits per pixel, using the P g 9

L . shown to be decomposable along the subbands.
quantization scheme in the UICODER software package (seqt is worth considering how to compare the multiresolu-

[15]). The PSNR of image "D97” i82.4 dB, and the PSNR of tion SVD to existing multiresolution decompositions, e.g.,

'mage HAAR '5"3_0'1. d.B' On closer inspection, the blocking, 5y ejets. Comparison needs a basis. The multiresolution SVD
artifact in "HAAR” is visible. . . ovides an analysis tool to inquire into the properties (isotropy,
Table IV Sh_OWS yalues.obtalned from the decomposition 5 hericity, self-similarity) of signals. The basis for comparison
MSE as descr!‘bed |n Seqtlon V-D. 'Itcan be seeq@ﬁ% of the is the extent that other transforms provide the same analysis
total MSE fgr D_97 lies in the residual, and. Wh'le_94% IS tr_“atool. With the mutiresolution SVD, we are able to talk in terms
c.or.respondlng figure for “HAAR.” Th_e bIochng artlfact.that ISof signal properties because we are using a signal-adapted
visible in "HAAR” shows up as_the sllghtly higher errorin eacr}ransform. Insofar as a nonsignal-adapted transform (such as
of the gdge componen_ts (ver tical, horlzontal, and d'agonal)'\ﬁavelets) is used, there is no comparison—perhaps a contrast.
well as in the substantially higher residual. However, a valuable aspect of nonadapted transforms is that
they provide a neutral basis for comparing different signals. To
the extent that the basis is “natural,” signals may be meaning-
This paper has proposed a multiresolution form of the sifully compared. For example, the Fourier basis is natural in the
gular value decomposition for purposes of signal analysis agénse that it is motivated by physical considerations. There is no
comparison. Methods for interpreting and using the singulaimilarly motivated basis for multiresolution decompositions,
values, eigenvectors, and subbands are discussed. In particalad, hence there will always be a multitude of approaches here.
the concept of coding gain was interpreted as a statistic forWe have not yet discussed the aspect of compression. Clearly,
spherical principal components; the degree of self-similarity tite SVD is attractive as a compression tool, since it yields op-

VIIl. CONCLUSIONS
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timal subrank approximation. However, a potential disadvan-[g]
tage of the SVD is that the decorrelating filters do not neces-
sarily have linear phase. It would be interesting to investigate
a “biorthogonal” form of the SVD, if one exists. Moreover, the [10]
effect of quantization on subrank approximation needs furthe[r1
study.

Finally, the multiresolution SVD may be viewed as a type of
fast, approximate SVD. The relationships to other fast but apt2]
proximate SVD algorithms, such as obtained by a Monte-Carl 3]
approach [16], and the extent to which the actual SVD may be
approximated by a multiresolution SVD, are topics deservinql“]
further study. 13l
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APPENDIX

Equation (10) may be shown as follows. Léthe thelV x N
(square) matrix obtained by placiog on top of ¥V — M rows
of zeros. Then thaonzerasingular values o are easily seen

to be exactly those ok'. We may now use the result [8, p. 178
that for every pair of matriced, B having the same dimensiong

Now, lettingA = X andB = H, and using the fact that largest
singular value off is 1, we obtain (10).
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