3,766 research outputs found
Lung Rest During Extracorporeal Membrane Oxygenation for Neonatal Respiratory Failure-Practice Variations and Outcomes.
OBJECTIVE: Describe practice variations in ventilator strategies used for lung rest during extracorporeal membrane oxygenation for respiratory failure in neonates, and assess the potential impact of various lung rest strategies on the duration of extracorporeal membrane oxygenation and the duration of mechanical ventilation after decannulation.
DATA SOURCES: Retrospective cohort analysis from the Extracorporeal Life Support Organization registry database during the years 2008-2013.
STUDY SELECTION: All extracorporeal membrane oxygenation runs for infants less than or equal to 30 days of life for pulmonary reasons were included.
DATA EXTRACTION: Ventilator type and ventilator settings used for lung rest at 24 hours after extracorporeal membrane oxygenation initiation were obtained.
DATA SYNTHESIS: A total of 3,040 cases met inclusion criteria. Conventional mechanical ventilation was used for lung rest in 88% of cases and high frequency ventilation was used in 12%. In the conventional mechanical ventilation group, 32% used positive end-expiratory pressure strategy of 4-6βcm H2O (low), 22% used 7-9βcm H2O (mid), and 43% used 10-12βcm H2O (high). High frequency ventilation was associated with an increased mean (SEM) hours of extracorporeal membrane oxygenation (150.2 [0.05] vs 125 [0.02]; p \u3c 0.001) and an increased mean (SEM) hours of mechanical ventilation after decannulation (135 [0.09] vs 100.2 [0.03]; p = 0.002), compared with conventional mechanical ventilation among survivors. Within the conventional mechanical ventilation group, use of higher positive end-expiratory pressure was associated with a decreased mean (SEM) hours of extracorporeal membrane oxygenation (high vs low: 136 [1.06] vs 156 [1.06], p = 0.001; mid vs low: 141 [1.06] vs 156 [1.06]; p = 0.04) but increased duration of mechanical ventilation after decannulation in the high positive end-expiratory pressure group compared with low positive end-expiratory pressure (p = 0.04) among survivors.
CONCLUSIONS: Wide practice variation exists with regard to ventilator settings used for lung rest during neonatal respiratory extracorporeal membrane oxygenation. Use of high frequency ventilation when compared with conventional mechanical ventilation and use of low positive end-expiratory pressure strategy when compared with mid positive end-expiratory pressure and high positive end-expiratory pressure strategy is associated with longer duration of extracorporeal membrane oxygenation. Further research to provide evidence to drive optimization of pulmonary management during neonatal respiratory extracorporeal membrane oxygenation is warranted
Pressure Dependence of Superconducting Transition Temperature on Perovskite-Type Fe-Based Superconductors and NMR Study of Sr2VFeAsO3
We report the pressure dependences of the superconducting transition
temperature (T_c) in several perovskite-type Fe-based superconductors through
the resistivity measurements up to ~4 GPa. In Ca_4(Mg,Ti)_3Fe_2As_2O_y with the
highest T_c of 47 K in the present study, the T_c keeps almost constant up to
~1 GPa, and starts to decrease above it. From the comparison among several
systems, we obtained a tendency that low T_c with the longer a-axis length at
ambient pressure increases under pressure, but high T_c with the shorter a-axis
length at ambient pressure hardly increases. We also report the ^75As-NMR
results on Sr_2VFeAsO_3. NMR spectrum suggests that the magnetic ordering
occurs at low temperatures accompanied by some inhomogeneity. In the
superconducting state, we confirmed the anomaly by the occurrence of
superconductivity in the nuclear spin lattice relaxation rate 1/T_1, but the
spin fluctuations unrelated with the superconductivity are dominant. It is
conjectured that the localized V-3d moments are magnetically ordered and their
electrons do not contribute largely to the Fermi surface and the
superconductivity in Sr_2VFeAsO_3.Comment: 7 pages, 9 figure
Effects of metallic spacer in layered superconducting Sr2(MgTi)O3FeAs
The highly two-dimensional superconducting system
Sr2(MgTi)O3FeAs, recently synthesized in the range of 0.2 < y <
0.5, shows an Mg concentration-dependent . Reducing the Mg concentration
from y=0.5 leads to a sudden increase in , with a maximum ~40 K at
y=0.2. Using first principles calculations, the unsynthesized stoichiometric
y=0 and the substoichiometric y=0.5 compounds have been investigated. For the
50% Mg-doped phase (y=0.5), Sr2(MgTi)O3 layers are completely
insulating spacers between FeAs layers, leading to the fermiology such as that
found for other Fe pnictides. At y=0, representing a phase with metallic
Sr2TiO3 layers, the -centered Fe-derived Fermi surfaces (FSs)
considerably shrink or disappear. Instead, three -centered Ti FSs
appear, and in particular two of them have similar size, like in MgB2.
Interestingly, FSs have very low Fermi velocity in large fractions: the lowest
being 0.6 cm/s. Furthermore, our fixed spin moment calculations
suggest the possibility of magnetic ordering, with magnetic Ti and nearly
nonmagnetic Fe ions. These results indicate a crucial role of
Sr2(MgTi)O3 layers in this superconductivity.Comment: 7 pages; Proceedings of ICSM-201
18q loss of heterozygosity in microsatellite stable colorectal cancer is correlated with CpG island methylator phenotype-negative (CIMP-0) and inversely with CIMP-low and CIMP-high
<p>Abstract</p> <p>Background:</p> <p>The CpG island methylator phenotype (CIMP) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, associated with microsatellite instability-high (MSI-high) and <it>BRAF </it>mutations. 18q loss of heterozygosity (LOH) commonly present in colorectal cancer with chromosomal instability (CIN) is associated with global hypomethylation in tumor cell. A recent study has shown an inverse correlation between CIN and CIMP (determined by MINTs, p16, p14 and <it>MLH1 </it>methylation) in colorectal cancer. However, no study has examined 18q LOH in relation to CIMP-high, CIMP-low (less extensive promoter methylation) and CIMP-0 (CIMP-negative), determined by quantitative DNA methylation analysis.</p> <p>Methods:</p> <p>Utilizing MethyLight technology (real-time PCR), we quantified DNA methylation in 8 CIMP-specific promoters {<it>CACNA1G</it>, <it>CDKN2A </it>(p16), <it>CRABP1, IGF2</it>, <it>MLH1, NEUROG1, RUNX3 </it>and <it>SOCS1</it>} in 758 non-MSI-high colorectal cancers obtained from two large prospective cohorts. Using four 18q microsatellite markers (D18S55, D18S56, D18S67 and D18S487) and stringent criteria for 18q LOH, we selected 374 tumors (236 LOH-positive tumors with β₯ 2 markers showing LOH; and 138 LOH-negative tumors with β₯ 3 informative markers and no LOH).</p> <p>Results:</p> <p>CIMP-0 (0/8 methylated promoters) was significantly more common in 18q LOH-positive tumors (59% = 139/236, p = 0.002) than 18q LOH-negative tumors (44% = 61/138), while CIMP-low/high (1/8β8/8 methylated promoters) was significantly more common (56%) in 18q LOH-negative tumors than 18q LOH-positive tumors (41%). These relations persisted after stratification by sex, location, or the status of MSI, p53 expression (by immunohistochemistry), or <it>KRAS/BRAF </it>mutation.</p> <p>Conclusion:</p> <p>18q LOH is correlated positively with CIMP-0 and inversely with CIMP-low and CIMP-high. Our findings provide supporting evidence for relationship between CIMP-0 and 18q LOH as well as a molecular difference between CIMP-0 and CIMP-low in colorectal cancer.</p
Microscopic analysis of the chemical reaction between Fe(Te,Se) thin films and underlying CaF
To understand the chemical reaction at the interface of materials, we
performed a transmission electron microscopy (TEM) observation in four types of
Fe(Te,Se) superconducting thin films prepared on different types of substrates:
CaF2 substrate, CaF2 substrate with a CaF2 buffer layer, CaF2 substrate with a
FeSe buffer layer, and a LaAlO3 substrate with a CaF2 buffer layer. Based on
the energy-dispersive X-ray spectrometer (EDX) analysis, we found possible
interdiffusion between fluorine and selenium that has a strong influence on the
superconductivity in Fe(Te,Se) films. The chemical interdiffusion also plays a
significant role in the variation of the lattice parameters. The lattice
parameters of the Fe(Te,Se) thin films are primarily determined by the chemical
substitution of anions, and the lattice mismatch only plays a secondary role.Comment: 30 pages, 9 figur
Evidence for Nodal superconductivity in SrScFePO
Point contact Andreev reflection spectra have been taken as a function of
temperature and magnetic field on the polycrystalline form of the newly
discovered iron-based superconductor Sr2ScFePO3. A zero bias conductance peak
which disappears at the superconducting transition temperature, dominates all
of the spectra. Data taken in high magnetic fields show that this feature
survives until 7T at 2K and a flattening of the feature is observed in some
contacts. Here we inspect whether these observations can be interpreted within
a d-wave, or nodal order parameter framework which would be consistent with the
recent theoretical model where the height of the P in the Fe-P-Fe plane is key
to the symmetry of the superconductivity. However, in polycrystalline samples
care must be taken when examining Andreev spectra to eliminate or take into
account artefacts associated with the possible effects of Josephson junctions
and random alignment of grains.Comment: Published versio
Evolution of superconductivity by oxygen annealing in FeTe0.8S0.2
Oxygen annealing dramatically improved the superconducting properties of
solid-state-reacted FeTe0.8S0.2, which showed only a broad onset of
superconducting transition just after the synthesis. The zero resistivity
appeared and reached 8.5 K by the oxygen annealing at 200\degree C. The
superconducting volume fraction was also enhanced from 0 to almost 100%. The
lattice constants were compressed by the oxygen annealing, indicating that the
evolution of bulk superconductivity in FeTe0.8S0.2 was correlated to the
shrinkage of lattice.Comment: 13 pages, 6 figure
Successive transition from superconducting to antiferromagnetic phase in (Ca_6(Al, Ti)_4O_y)Fe_2As_2 studied via ^{75}As and ^{27}Al NMR
An unusual successive phase transition from superconducting (SC) to
antiferromagnetic (AF) phases was discovered via ^{75}As and ^{27}Al nuclear
magnetic resonance (NMR) in (Fe_2As_2)(Ca_6(Al, Ti)_4O_y) with four (Al, Ti)O
layers intercalated between FeAs planes. Although the spatially-uniform AF
ordering is clearly visible from ^{27}Al spectra, the ordered moments are very
small and the low-frequency fluctuation is much suppressed, contrary to
existing pnictides with localized magnetic elements. Furthermore, the
temperature (T) dependence of the fluctuation at both nuclei is very similar
throughout the entire temperature range. These facts suggest that some
hybridization between Ti and Fe orbitals induces a uniform electronic state
within FeAs and (Al, Ti)O layers accompanied by the SC and AF transitions. The
iron-based pnictide with Ti-doped blocking layers is the first high-T_c
compound having metallic blocking layers
TGFBR2 and BAX Mononucleotide Tract Mutations, Microsatellite Instability, and Prognosis in 1072 Colorectal Cancers
Mononucleotide tracts in the coding regions of the TGFBR2 and BAX genes are commonly mutated in microsatellite instability-high (MSI-high) colon cancers. The receptor TGFBR2 plays an important role in the TGFB1 (transforming growth factor-Ξ², TGF-Ξ²) signaling pathway, and BAX plays a key role in apoptosis. However, a role of TGFBR2 or BAX mononucleotide mutation in colorectal cancer as a prognostic biomarker remains uncertain.We utilized a database of 1072 rectal and colon cancers in two prospective cohort studies (the Nurses' Health Study and the Health Professionals Follow-up Study). Cox proportional hazards model was used to compute mortality hazard ratio (HR), adjusted for clinical, pathological and molecular features including the CpG island methylator phenotype (CIMP), LINE-1 methylation, and KRAS, BRAF and PIK3CA mutations. MSI-high was observed in 15% (162/1072) of all colorectal cancers. TGFBR2 and BAX mononucleotide mutations were detected in 74% (117/159) and 30% (48/158) of MSI-high tumors, respectively. In Kaplan-Meier analysis as well as univariate and multivariate Cox regression analyses, compared to microsatellite stable (MSS)/MSI-low cases, MSI-high cases were associated with superior colorectal cancer-specific survival [adjusted HR, 0.34; 95% confidence interval (CI), 0.20-0.57] regardless of TGFBR2 or BAX mutation status. Among MSI-high tumors, TGFBR2 mononucleotide mutation was associated with CIMP-high independent of other variables [multivariate odds ratio, 3.57; 95% CI, 1.66-7.66; pβ=β0.0011].TGFBR2 or BAX mononucleotide mutations are not associated with the patient survival outcome in MSI-high colorectal cancer. Our data do not support those mutations as prognostic biomarkers (beyond MSI) in colorectal carcinoma
- β¦