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THEORY OF ELECTRON COOLING WITH MAGNETIC FIELD AND
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In this paper we present a 'compact theory of electron cooling. In the frame in which the electron beam is at rest,
we estimate the friction coefficients and the diffusion tensor for cases with and without a solenoidal field and the
space charge of the electron beam. Cooling rates are given by the friction coefficients and equilibrium beam sizes
by the elements of the diffusion tensor. Scaling that considers the cooling-region length relative to the periodic
lattice structure and transformation to the laboratory frame are not discussed.

I. INTRODUCTION

Electron cooling uses the energy transfer from
the hot heavy particles to the cold electrons in
Coulomb collisions. The process was investi
gated many years ago by Spitzerl to derive the
momentum a'nd temperature relaxation time be
tween the two kinds of charged particles. Thomp
son and Hubbard2,3 obtained the diffusion and
friction coefficients of the Fokker-Planck equa
tion without magnetic field by statistically aver
aging the trajectory of a test particle in fluctuating
fields. When the Fokker-Planck equation is in
tegrated over velocIty space, the moment equa
tions express the momentum and energy relax
ation and give the relaxation time of Spitzer. The
Thompson-Hubbard method has the advantage
that it is easy to understand and to apply in var
ious cases. Moreover, the method is an alterna
tive one to obtain the Balescu-Lenard collision
term,4,5 which generally determines the time ev
olution of the velocity distribution function.

Using the Thompson-Hubbard method, Ichi
maru and Rosenbluth6 calculated the Fokker
Planck coefficients of a plasma in a uniform mag
netic field in terms of the spectral function offluc
tuating fields and the plasma 'dielectric response
function. The relaxation process in plasmas with
the magnetic field has also been studied by many
other authors.7

-
1o They usually derive an
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expression for the kinetic equation, which self
consistently includes the Coulomb interaction,
and the Fokker-Planck coefficients, which are
still described by the troublesome integration of
the spectral function of fluctuating fields.

Budker proposed. the electron cooling method
for heavy particles. The cooling of protons by
cold electrons has been studied at Novosibirsk
to observe the damping of betatron oscillations.

The theory ofelectron cooling in an accelerator
was given by Budker et alII and Derbenev and
Skrinskyl2,13 on the basis of the Landau collision
integral, which is an excellent approximation of
the Balescu-Lenard collision term.4,5 The drag
force on the heavy ion obtained agrees with the
result of Spitzer or Thompson and Hubbard with
out magnetic field. The energy cooling time is
also the same as the Spitzer's temperature relax
ation time for an isotropic velocity distribution.

The drag force in a solenoidal magnetic field
was given successively by Derbenev and Skrin
sky,13 Rosenbluth,14 and Bell. 15 In that case,
since the electrons are trapped by the magnetic
field lines and the motion transverse to the mag
netic field is prohibited in a range larger than the
electron Larmor radius, the transverse spread of
electron velocity has no effect on the drag force.
As a result, the cooling time with magnetic field
is shorter than that without magnetic field if the
spread of parallel electron velocity is much nar
rower than the transverse spread. The effect of
the space charge of electron beam on electron
cooling, which was first studied by Dikansky et
al. 16 is also important because it might give a lim
itation of the electron cooling.
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In this case, Eq. (1) can be rewritten by using the
Fourier expansion

(3a)

(3c)

(3b)

E = Ee + Ep

When there is a uniform magnetic field B in the
z-direction of the main motion and a radial elec
tric field E r = - 27Tner due to the space charge
of the uniform density n of the electron beam as
the zeroth-order fields, the equation of motion
of the s-th electron can be written in the form

Moreover, we can write the electric field as

where q = - e C;l.nd q p = Ze. The vectors r.\,
r s(t) and r p = r p(t) are, respectively, the positions
of the s-th electron and the ion. It is sufficient to
calculate only the electric field corresponding to
the scalar potential, because the velocity devia
tion of each particle from the streaming velocity
of the beam is much smaller than the velocity of
light.. Hence, we can use Poisson's equation

II. DERIVATION OF THE FRICTION
COEFFICIENT AND DIFFUSION
TENSOR

The electron cooling in accelerators has some
features different from the usual relaxation proc
ess between two kinds of particles in a plasma.
Accelerator physicists want to make the beam
emittance small by electron cooling. Since the
emittance depends on both velocity space and
position space, it is usually difficult to calculate
analytically the variation of emittance in fluctua
tion fields. On the other hand, the momentum,
energy and temperature relaxation processes dis
cussed by plasma physicists are connected only
with the variation in velocity space. Therefore,
strictly speaking, the energy relaxation in plas
mas should be distinguished from the variation
of emittance, but, if we are interested in only the
variation of momentum and energy, the calcu
lation of the relaxation process in plasmas can
be applied to the beams in the accelerator. If the
emittance is practically determined only from
velocity space and is almost independent of the
spread in position space caused by fluctuating
fields, the decrease of emittance will agree well
with the energy relaxation result. Otherwise, the
damping of emittance in heavy ions is often
slower than that of energy.

In .this paper, we will derive the friction coef
ficient and diffusion tensor of heavy ions in ve
locity space, with a solenoidal magnetic field and
space-charge effects on the electron beam also
taken into account.

In order to study the kinetics of the electron cool
ing, we will calculate the friction coefficient and
the diffusion tensor in velocity space of the heavy
ion. We adopt the Thompson-Hubbard ap
proach6

•
7 which calculates them from a statistical

analysis of the motion of a test particle in· the
background fluctuating fields. The calculations
are done in the rest frame of the electrons.

. 2 A q E
v s = Wp r..L + ~ LVs X Z + - .

m

and that of the ion can be written as

(4a)

(4b)

(5a)

I. Particle Motion in Fluctuating Fields

The electron and ion charge densities are as
sumed to be given by where r s is the time derivative drs/dt, r -l =

(x, y, 0) and z is the unit vector in the z direction.
Then w p2 = - 27Teqn/m = 27Te 2n/m, W~i =
-27Teqpn/m p, n = qB/mc = -eB/mc,Op=
qplJ/mpc and qp = Ze are defined, where Z = I

Pe = q L 8(r - r s ) (Ia)

(Ib)

. 2 + A " + qp E ~ qp EVp = Wpir..L ~LpVp X Z - = - ,
m p m p

(5b)



THEORY OF ELECTRON COOLING WITH MAGNETIC FIELD AND SPACE CHARGE 199

is used for the proton and Z = - 1 for the anti
proton. The last equation in Eq. (5b) is valid for
IOpTtl ~ 1 and /wp1-'Ttl ~ 1, and that condition is
well satisfied in the experiments,17 where T t is
the transit time of the ion. through the electron
cooling region.

(7a)

2. Solution of the EquatiQn of Motion

2.1. No Space Charge

We may calculate the trajectory of the s-th
electron by integrating Eq. (4) for wp

2 = O.

rs(t) = rs(O) + H(t)·vs(O)

+ !L It dt'H(t - t')·E[rAt'), t']
m 0

Vs(t) = G(t)·vs(O)

+ !L It dt'G(t - t')·E[rAt'), t'],
m 0

(7b)

where again the terms Llrp and Llvp are the terms
containing integrals.

2.2. With Space Charge

We introduce the space-charge effect of a uni
form electron beam by a radial electric field
Er = - 27rner. In this case we can obtain as the
solution of Eq. (4)

where r s(O) is the initial position and vs(O) the
initial velocity. Putting t - t' = T, we can write

(8a)

(6a)

vs(t) = G(t)·vs(O)
(8b)

qlt+ - dTG(T)·E[rs(t - T), t - T]
m 0

(6b)

Since the magnetic field makes only a small con
tribution to the trajectory of the ion, we may ne
glect its effect for ions and put Op = o.

Here we define

1 [a.
a2

~ W2 JK.(t) = ( ) -a2 al
WI - W2 0

0 WI

[ a3
-a4

~J
WIW2

K 2(t) = ( ) a4 Q3
WI - W2 0

0

1 [ a3
-Q4

~ W2)J
K 3(t) = ( Q4 Q3

WI - W2)0 0 (w I

1 [ as -a6

o JK 4(t) = ( Q6 as o '
WI - W2) 0 0 WI - W2

- cos Ot 0 J
sin Ot 0

o Ot

== Vso + Llvs ,

where drs and Llvs are the terms containing in
tegrals and where

1 [ sin Ot
H(t) = n: - (l - oCos Ot)

dH(t) [COS Ot sin Ot OJ
G(t) = -- = - sin Ot cos Ot 0

dt 0 0 1
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where a I = 00 I cos 00 It - 00 2 cos 00 2t , a 2 = 00 J

sin WIt - 002 sin W2t, a3 = sin Wit - sin W2t,
a4 = cos WIt - cos W2t, as = -002 cos WIt
+ 00 I cos 00 2t , and a 6 = 00 2 sin 00 It - ·00 I sin
oo2t. In these equations,

00 1== j [-fl + (fl2 - 4W p
2)1/2] == -0 (>0)

and

002 == j [-fl - (fl2 - 4(a) p 2)1/2] == -oo p
2/fl,

where the approximate expressions are valid for
101 ~ loop I· This condition is usually satisfied in
the experiments. 17 In the case with space charge,
the trajectory of the ion is still well ~escribed by
Eq. (7).

On the other hand, we can calculate approxi
mately the fluctuating electric field for Ik·arpi
~ Ik·~rsl ~ I from Eqs. (3b) and (6a).

qi J k= - -~. dk - eik'(Rp-R s )

271'2 ~ k2

(Ila)

x [1 - ik·ars 1

3. Diffusion Tensor in Velocity Space

We will calculate the velocity-space diffusion
tensor of the ion by using the solution of the
equation of motion..

and similarly

where we neglect ik·arp because Iarp /ars I* m/
m p ~ 1. Using only the first term in Eq. (1Ia),

(12)

2q 2 J kk .
= -:;- ~ dk k4 exp{tk-[(Rp - Rs),

- (Rp - RS)t-T]}

where (Rp - RS )I, for instance denotes the quan
tity at t.

Moreover, we replace ~s with f dr dv g(v) =
n f dv g(v), where nand g(v) are, respectively
the uniform number density and the velocity dis
tribution function of the electrons. We can now
write the diffusion tensor as

(£e[rp(t), t]Ee[rp(t - T), t - T])

= - 4~4 «(~ Jdk :2 el~'(RP-RS»)

x (~ Jdk l ~~ el~'-<RP-RS)t-T)
(9)

3.1. Diffusion Tensor Without Magnetic Field
and Space Charge

The diffusion tensor of the ion is defined as

Since the quantity (Ee·Ee) is assumed not to de
pend explicitly on t, we may extend the region
of integration with respect to T to infinity. Thus
we have

where T c is the correlation time of the fluctuation
field. Since the self-field of the ions is to be ex
cluded, we use E = Ee • Hence we can obtain
from Eqs. (5b) and (7b)

(10)

(13a)

(13b)
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(14)

In the case without magnetic field and space
charge, we can write 6 from Eqs. (6) and (7) as

6 = ik·uT,

where U == vp - v. Hence we obtain the familiar
diffusion tensor,

2q 2q2nJ J kkDp= :;'p2 dv dk k4 3(k·u)g(v)

= 21TQp2q2nlnAJd u
28ij - UjUj ( )

2 V 3 g V ,mp U

where we take the Coulomb logarithm, In A ==
In(k maxlk min) out of the integral because its ve
locity dependency is weak. Here k max = kD and
kmin = lIb I are valid, where kD is the reciprocal
of-the electron Debye length andb J the minimum
impact parameter.

3.2. Diffusion Tensor With Magnetic Field and
Without Space Charge

In this case, the diffusion tensor of the ions is
also given by Eq. (13). Therefore, we calculate
Eq. (13b) by using Eqs. (6) and (7) .

.(k k) · k1.V 1.6 = I ·Vp - zV z T + 'n
x {sin[O(t - T) - 'P v] - sin[!lt - 'P v]}

where k.l. = (k x
2 + ky

2)1/2, V.l. = (v x
2 + Vy

2)1/2,
'P v = \fJ v - \fJ k, \fJ v = tan - I (v y Iv x), and l1J k =
tan -l(kylkx). Thus we can calculate the diffusion
tensor from Eq. (13) by using the Bessel function
expansion formula

D p = 2;::;;n Jdv L~ dT Jdk ~~

v

x g(v)

= 2q:;,:~2n; Jdv Jdk ~ J v
2m

x 8(k·vp - kzv z - v!l)g(v) (15)

where ~ = k.l.V.1.. II n Iand J v is the Bessel function
of the v-th order.

If the magnetic -field is very strong, the con
dition , ~ 1 becomes valid. In this case, the dif
fusion tensor IS simply written as

(16)

for kD < k < k p' where U = vp - vz' Vz = VzZ ,
A 2 == kp/k D , and k p is the reciprocal of the Lar
mor radius.

3.3. Diffusion Tensor With Magnetic Field and
Space Charge

In this case, we can merely calculate 6 by using
Eqs. (6) and (7).

- sin [00 It - 'Pvl

- sin[w2(t - T) - 'Pv]

+ sin[w2t - 'Pv]}

+ i~2{ - COS[Wl(t - T) - 'P]

+ cos[w1t - 'P]}

+ i~3 {COS[W2(t - T) - 'P]

- COS[W2t - 'P]},

where we define <{Iv = l1Jv - \fJk' 'P = l1J - l1Jk' r
= Cr + y2)1/2, l1J = tan -1(Ylx),

r _ k.l. V .1.. -=- k.l. V .1.. r _ W2k.l.r -=- W p
2 k

~1 - -:- I I' ':»2 - -:- n 2 .1..r ,
WI - 002 n WI - 002 11£

and

Consequently we can calculate the diffusion ten
sor from Eq. (13) by using the Bessel function
expansion.
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(17)

(19a)

(20)

WIVa
---~va·
WI - W2

~3W2 W IW2r
w==---=- .

k.L WI-W2

4.1. Friction Coefficient Without Magnetic
Field and Space Charge

The variation of the momentum of the ion or
the friction coefficient is defined as

is given, wh'ere U r = k.l(u.l cos 'P u + w sin 'P)
+ k zU z ,u = vp - vz and

The quantity, Va == - W 2r is the rotation velocity
of the "electrons due to the solenoid magnetic field
and the radial electric field of the uniform space
charge. Hence we obtain the diffusion tensor.

2qp2q 2n J J kk
D p == m/ dv dk k 4 8(ar )g(v).

4. Friction Coefficient in Velocity Space

We will calculate the friction coefficient of the
ion in velocity space. Although only the variation
of momentum' of the ion is calculated, it gives the
correct friction coefficient because we can ne
glect the displacement on the ion.

where u = Vp - Vz is used for lu.l cos 'Pul ~
Iw sin 'PI; on the contrary, u = V'P + Vpz - Vz

should be used for IU.i cos 'P u I ~ Iw sin 'P I and
V'P == (w sin 'P, - w cos 'P, 0). Then, the diffusion
tensor given by Eq. (20) can be approximately
applied to either case with u = vp + V'P - VZ •

Integrating this equation with respect to k, the
following expression is obtained.

D,
_ 27rqp2q2nlnA2Jd u28ij - UiUj ( )

p- 2 V 3 gv,
m p u

(19b)

1 I == ~ J~I(~ I ) (18a)
VI

12 == ~ J~2 (~l ) (18b)
1'2

13 == ~ J~3 (~2') (18c)
V3

14 == ~ J~4 (~3)' (18d)
V4

whereOr==k'vp - kzv z - VIWI + V2W 2 + V3W I

- V4W2 and

If there is no space charge, WI = - 0, W 2 = 0,
~ I = k.iv .ill 0 I, and ~ 2 = 0 are valid from W p

= O. Therefore, 12 = 13 = 14 = 1 is given and
Eq. (17) reduces to Eq. (15) which is previously
given for no space charge.

If the magnetic field is strong, we can rewrite
Eq. (17) fot I~ I I ~ 1 as

2q 2q2n J J kk
D p = :n 2 dv dk k 4 13!48(Or)g(V) ,

p

where Or = k'vp - kzv z + V3Wl - V4W2. When
the magnetic field is even stronger, the condition
I~ 21 ~ 1 is also valid. Then, since 13 = 1 is sat
isfied, the diffusion tensor can be written as

D p == 2
Q
;2

p
;2

n ~Jdv Jdk ~~ J/(~3)

Here it should be noted that ~3 == k.lr is often
much larger than unity in the experimental con
dition. 17 In this case, the integration of Eq. (19b)
can only be done by numerical calculations.

Next, we rewrite the diffusion tensor in a form
that can be analytically integrated, under the con
ditions It I I ~ 1, It 21 ~ 1 and It 31 ~ 1 because
these conditions will be approximately satisfied
in the experiments. In this case,

e~ i(k'vp - k zV z - '3W 2 sin 'P)T

== i(k·u + k.L w sin 'P)T

== in rT

A p == (avp
) = (dVp

). (21)
T c dt

Since the self-field of the ion can be ignored, we
obtain from Eqs. (5b) and (1Ia).

d;; == ~: Ee[rp(t)]
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.The first term does not contribute on the average.
On the other hand, we have from Eq. (6a)

e = ik·UT

u = Vp - v.

Thus we have the friction coefficient

(23)

Here we neglect the contribution from the back
ground electrons. This approximation is satisfied
when the interaction length is shorter than the
Debye length.

Substituting these equations into Eq. (21), we
obtain

[
B(ar + 0) - B(ar - 0) k 2

X 20 1-

+ k z
2 d~~:)J J.2(~)g(V), (24)

4.2. Friction Coefficient With Magnetic Field
and Without Space Charge

Since Eq. (22) is also valid in this case and e
was previously given, we have

sin OT
k'R(T)'k = ---ok.L 2 + Tk/.

where we take In A = In(k max /k min) out the in
tegral because of its weak velocity dependency,
and u = lui.

Hence we obtain by using the Bessel function
expansion.

(22)

(I) ==<~ f dk :2 e ik'(R
p

- R s
),

X [k' LdT R(T)' f dkl kk
l

1
2

x e1"kdRs-RP)t-T)

= (21T)3 ~LdT f dk:2 k'~~)'k !'-~.

Since e = ik·[(Rp - Rs)t - (Rp - RS)t-T] does
not explicitly depend on t, we can €*tend -the re
gion of· integration with respect to T to infinity.
Moreover, we replace L s with f dr dv g(v)
=n f dv g(v). As a result, we obtain the friction
coefficient

f dk~ k-H(T)'k e ( )
X k 2 k 2 e g v .

If there is no ma~netic field or space charge,
we get

where a,. = k·vp - kz.vz. - uOand~ = k-Lv-tIIOI
If the magnetic field is strong, I~I ~ 1, Eq. (24)

reduces to
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f dk ~ k 2 d8(o.) ()
X k4 z do. g v

for k D < k < k p , where 0. = k·vp - kzv z ' U =
vp - Vz and A 2 = kp/k D •.

On the other hand, if the magnetic field is
weak, 1~ I ~ 1and lOT 1~ 1, the friction coefficient
without magnetic field given by Eq. (23) is again
given from e = ik·uT, k·H(T)·k = Tk 2 and U =
Vp - v.

4.3. Friction Coefficient With Magnetic Field
and Space Charge

As can be understood by comparing Eq. (6)
with Eq. (8), the friction coefficient given by Eq.
(22) is also valid if we replace H(T) with K 3(T).
We therefore calculate

k K ( ) k
sin WIT - sin W2T k 2

· 3T· = +T z •
W] - W2

Then eis already given. Using these expressions,
we have

Eq. (26) for 1~ tI ~ 1 as

Ap == 2~::n f dv f dk :4 hI4

(27a)

where Or = k·vp - kzv z + V3W] - V4W2. When
the magnetic field is even stronger, I~ 21 ~ 1, I 3

= 1 is also valid and Eq. (27a) reduces to

A p == 2qp
2
q

2
n L f dv

mpm v

where Or = k·vp - kzv z - VW2. The integration
of Eq. (27b) requires numerical calculation be
cause ~3 ~ k.lr is often much larger than unity.

Next we rewrite the friction coefficient in an
other form for I~ I 1~ 1, I~ 21 ~ 1 and I~ 31 ~ 1 by
using a procedure similar to that iIsed in the cal
culation of the diffusion tensor.

(28)

where o.r = k.l(u.l cos 'Pu + w sin 'P) + kzu z and
U = vp - Vz . By integration of Eq. (28) with
respect to k, the friction coefficient is found to
be

X [ Q k 2 + k 2 d8(Or)] ()
2( ) J.. z dn g v ,

WI - W2 ~Lr

(26) (29)

where Q == 8(Or + WI) - 8(Or - WI) - 8(Or
+ W2) + 8(Or - W2), Or == k·vp - kzv z - VIWI

+ V2W2 + V3WI - V4W2 and II to 14 are given
by Eq. (18).

When the magnetic field.is strong, we can write

for kD < k < kp , where U = Vp - Vz is used for
Iu.l cos 'Pili ~ Iw sin 'PI; on the contrary, U = Vl4'

+ Vpz - Vz is used for IU.l cos 'P I~ Iw sin 'P Iand
v~ = (w sin 'P, - w cos 'P, 0). As a result, the fric
tion coefficient described by Eq. (29) can be ap-
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(30b)

Ape = -A px sin tV + A py cos \fJ,

Apr = A px cos \fJ + A py sin \fJ

When we rewrite Eq. (29) in a cylindrical co
ordinate system by using the transformation

pected if the latter spread is considerably
smaller than the transverse. Unfortunately
in some real situations,17 it is desired to
cool hadronic beams with a momentum
spread comparable, if not larger, than the
transverse spread. For these beams, the
cooling rates are not expected to be af
fected by the presence of a solenoidal field.

(ii) The presence of space charge in the elec- .
tron beam weakens the performance of
electron cooling. This happens because the
drag force is no longer directed radially
with respect to the axis of the two beams
but rotates, acquiring an azimuthal com
ponent that does not affect the cooling..
Therefore, long electron beams are not rec
ommended for cooling.

(30a)

we have

Apr = 0

proximately applied to either case with U = Vp

+ V'f) - Vz •

A = 27rqp2q2n In A2 Jd (w
2

- 2u/)w ()
pe V ( 2 + 2)5/2 g Vmpm w U z

for lUi- cos 'Pili ~ Iw sin 'PI, where w = Va which
is the rotation velocity of the electrons in the
steady state. In this case, though A pz' does not
materially change, v pi- is entirely different from
the usual friction coefficient because Api- does
not depend on Ui- = VPi-' Ivpi-I does not decrease
but Vpi- approaches It'. In other words, the drag
force perpendicular to the magnetic field has no
effect on the proton for Iw sin 'P I ~I Ui- cos 'Pili
·or for Iwl ~ IVpi-l.

On the other hand, since k·K 3(T)·k = k 2T and
e = ik·UT are given for I~II ~ lor for IW2TI ~
IWIT I~ 1 and IW2tl ~ IWltl ~ 1, the friction coef
ficient without magnetic field given by Eq. (23)
again becomes valid for k > k p •

III. CONCLUSIONS

We have shown a compact way to estimate
cooling rates and diffusion coefficients for an
electron-cooling experiment. We want to stress
the following two major results:

(i) The presence of a strong magnetic field
makes the cooling rate independent of the
transverse velocity spread of the electron
beam. In this case the cooling rate depends
solely on the' longitudinal velocity spread.
An enhancement of the cooling can be ex-
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