34,250 research outputs found
Multipartite Entanglement Signature of Quantum Phase Transitions
We derive a general relation between the non-analyticities of the ground
state energy and those of a subclass of the multipartite generalized global
entanglement (GGE) measure defined by T. R. de Oliveira et al. [Phys. Rev. A
73, 010305(R) (2006)] for many-particle systems. We show that GGE signals both
a critical point location and the order of a quantum phase transition (QPT). We
also show that GGE allows us to study the relation between multipartite
entanglement and QPTs, suggesting that multipartite but not bipartite
entanglement is favored at the critical point. Finally, using GGE we were able,
at a second order QPT, to define a diverging entanglement length (EL) in terms
of the usual correlation length. We exemplify this with the XY spin-1/2 chain
and show that the EL is half the correlation length.Comment: Published version. Incorporates correction made in erratu
Collapse of Primordial Clouds
We present here studies of collapse of purely baryonic Population III objects
with masses ranging from to . A spherical Lagrangian
hydrodynamic code has been written to study the formation and evolution of the
primordial clouds, from the beginning of the recombination era () until the redshift when the collapse occurs. All the relevant processes
are included in the calculations, as well as, the expansion of the Universe. As
initial condition we take different values for the Hubble constant and for the
baryonic density parameter (considering however a purely baryonic Universe), as
well as different density perturbation spectra, in order to see their influence
on the behavior of the Population III objects evolution. We find, for example,
that the first mass that collapses is for ,
and with the mass scale . For
we obtain for the first
mass that collapses. The cooling-heating and photon drag processes have a key
role in the collapse of the clouds and in their thermal history. Our results
show, for example, that when we disregard the Compton cooling-heating, the
collapse of the objects with masses occurs earlier. On
the other hand, disregarding the photon drag process, the collapse occurs at a
higher redshift.Comment: 10 pages, MN plain TeX macros v1.6 file, 9 PS figures. Also available
at http://www.iagusp.usp.br/~oswaldo (click "OPTIONS" and then "ARTICLES").
MNRAS in pres
Collapse of Primordial Clouds II. The Role of Dark Matter
In this article we extend the study performed in our previous article on the
collapse of primordial objects. We here analyze the behavior of the physical
parameters for clouds ranging from to . We
studied the dynamical evolution of these clouds in two ways: purely baryonic
clouds and clouds with non-baryonic dark matter included. We start the
calculations at the beginning of the recombination era, following the evolution
of the structure until the collapse (that we defined as the time when the
density contrast of the baryonic matter is greater than ). We analyze the
behavior of the several physical parameters of the clouds (as, e.g., the
density contrast and the velocities of the baryonic matter and the dark matter)
as a function of time and radial position in the cloud. In this study all
physical processes that are relevant to the dynamical evolution of the
primordial clouds, as for example photon-drag (due to the cosmic background
radiation), hydrogen molecular production, besides the expansion of the
Universe, are included in the calculations. In particular we find that the
clouds, with dark matter, collapse at higher redshift when we compare the
results with the purely baryonic models. As a general result we find that the
distribution of the non-baryonic dark matter is more concentrated than the
baryonic one. It is important to stress that we do not take into account the
putative virialization of the non-baryonic dark matter, we just follow the time
and spatial evolution of the cloud solving its hydrodynamical equations. We
studied also the role of the cooling-heating processes in the purely baryonic
clouds.Comment: 8 pages, MN plain TeX macros v1.6 file, 13 PS figures. Also available
at http://www.iagusp.usp.br/~oswaldo (click "OPTIONS" and then "ARTICLES").
MNRAS in pres
Operational Classification and Quantification of Multipartite Entangled States
We formalize and extend an operational multipartite entanglement measure
introduced by T. R. Oliveira, G. Rigolin, and M. C. de Oliveira, Phys. Rev. A
73, 010305(R) (2006), through the generalization of global entanglement (GE)
[D. A. Meyer and N. R. Wallach, J. Math. Phys. 43, 4273 (2002)]. Contrarily to
GE the main feature of this measure lies in the fact that we study the mean
linear entropy of all possible partitions of a multipartite system. This allows
the construction of an operational multipartite entanglement measure which is
able to distinguish among different multipartite entangled states that GE
failed to discriminate. Furthermore, it is also maximum at the critical point
of the Ising chain in a transverse magnetic field, being thus able to detect a
quantum phase transition.Comment: 14 pages, RevTex4, published versio
Phase diagram of a model for a binary mixture of nematic molecules on a Bethe lattice
We investigate the phase diagram of a discrete version of the Maier-Saupe
model with the inclusion of additional degrees of freedom to mimic a
distribution of rodlike and disklike molecules. Solutions of this problem on a
Bethe lattice come from the analysis of the fixed points of a set of nonlinear
recursion relations. Besides the fixed points associated with isotropic and
uniaxial nematic structures, there is also a fixed point associated with a
biaxial nematic structure. Due to the existence of large overlaps of the
stability regions, we resorted to a scheme to calculate the free energy of
these structures deep in the interior of a large Cayley tree. Both
thermodynamic and dynamic-stability analyses rule out the presence of a biaxial
phase, in qualitative agreement with previous mean-field results
- …