64 research outputs found
Experimental and Numerical Studies on a Centrifugal Pump with 2D-Curved Blades in Cavitating Condition
In the presented study a special test-pump with 2D curvature blade geometry in cavitating and non-cavitating conditions was investigated using different experimental techniques and a 3D numerical model of cavitating flows. Experimental and numerical results concerning pump characteristics and performance breakdown were compared at different flow conditions. Appearing types of cavitation and the spatial distribution of vapour structures within the runner were also analysed
Numerical Simulation of Turbopump Inducer Cavitating Behavior
In the present study a numerical model of 3D cavitating
flows is proposed. It is applied to investigate the behavior of a
spatial turbopump inducer in noncavitating and cavitating
conditions. Experimental and numerical results concerning inducer
characteristics and performance breakdown are compared at
different flow conditions. The cavitation development and the
spatial distribution of vapor structures within the inducer are
also analyzed. The results show the ability of the code to
simulate the quasi-steady cavitating behavior of such a complex
geometry. Discrepancies concerning the breakdown prediction are
also discussed
Recommended from our members
Large Eddy Simulation of diesel injector opening with a two phase cavitation model
In the current paper, indicative results of the flow simulation during the opening phase of a Diesel injector are presented. In order to capture the complex flow field and cavitation structures forming in the injector, Large Eddy Simulation has been employed, whereas compressibility of the liquid was included. For taking into account cavitation effects, a two phase homogenous mixture model was employed. The mass transfer rate of the mixture model was adjusted to limit as much as possible the occurrence of negative pressures. During the simulation, pressure peaks have been found in areas of vapour collapse, with magnitude beyond 4000bar, which is higher that the yield stress of common materials. The locations of such pressure peaks corresponds well with the actual erosion location as found from X ray scans
Effects of Non-Sinusoidal Motion and Effective Angle of Attack on Energy Extraction Performance of a Fully- Activated Flapping Foil
Flapping foil energy harvesting systems are considered as highly competitive devices for conventional turbines. Several research projects have already been carried out to improve performances of such new devices. This paper is devoted to study effects of non-sinusoidal heaving trajectory, non-sinusoidal pitching trajectory, and the effective angle of attack on the energy extraction performances of a flapping foil operating at low Reynolds number (Re=1100). An elliptic function with an adjustable parameter S (flattening parameter) is used to simulate various sinusoidal and non-sinusoidal flapping trajectories. The flow around the flapping foil is simulated by solving Navier–Stokes equations using the commercial software Star CCM+ based on the finite-volume method. Overset mesh technique is used to model the flapping motion. The study is applied to the NACA0015 foil with the following kinetic parameters: a dimensionless heaving amplitude h0 = 1c, a shift angle between heaving and pitching motions f = 90 , a reduced frequency f = 0:14, and an effective angle of attack amax varying between 15 and 50 , corresponding to a pitching amplitude in the range q0 = 55:51 to 90:51 . The results show that, the non-sinusoidal trajectory affects considerably the energy extraction performances. For the reference case (sinusoidal heaving and pitching motions, Sh = Sq = 1), best performances are obtained for the effective angle of attack, amax = 40 . At small effective angle of attack amax 40 ), non-sinusoidal pitching motion has a negative effect. Performance improvement is quite limited with the combined motions non-sinusoidal heaving/sinusoidal pitching
Energy extraction performance improvement of a flapping foil by the use of combined foil
In this study, numerical investigations on the energy extraction performance of a flapping foil device are carried out by using a modified foil shape. The new foil shape is designed by combining the thick leading edge of NACA0012 foil and the thin trailing edge of NACA0006 foil. The numerical simulations are based on the solution of the unsteady and incompressible Navier-Stokes equations that govern the fluid flow around the flapping foil. These equations are resolved in a two-dimensional domain with a dynamic mesh technique using the CFD software ANSYS Fluent 16. A User Define Function (UDF) controls the imposed sinusoidal heaving and pitching motions. First, for a validation study, numerical simulations are performed for a NACA0012 foil undergoing imposed heaving and pitching motions at a low Reynolds number. The obtained results are in good agreement with numerical and experimental data available in the literature. Thereafter, the computations are applied for the new foil shape. The influences of the connecting area location between the leading and trailing segments, the Strouhal number and the effective angle of attack on the energy extraction performance are investigated at low Reynolds number (Re = 10 000). Then, the new foil shape performance was compared to those of both NACA0006 and NACA0012 baseline foils. The results have shown that the proposed foil shape achieves higher performance compared to the baseline NACA foils. Moreover, the energy extraction efficiency was improved by 30.60% compared to NACA0006 and by 17.32% compared to NACA0012. The analysis of the flow field around the flapping foils indicates a change of the vortex structure and the pressure distribution near the trailing edge of the combined foil compared to the baseline foils
Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil
The effect of nonsinusoidal trajectory on the propulsive performances and the vortex shedding process behind a flapping airfoil is investigated in this study. A movement of a rigid NACA0012 airfoil undergoing a combined heaving and pitching motions at low Reynolds number (Re¼11,000) is considered. An elliptic function with an adjustable parameter S (flattening parameter) is used to realize various nonsinusoidal trajectories of both motions. The two-dimensional (2D) unsteady and incompressible Navier–Stokes equation governing the flow over the flapping airfoil are resolved using the commercial software STAR CCMþ. It is shown that the nonsinusoidal flapping motion has a major effect on the propulsive performances of the flapping airfoil. Although the maximum propulsive efficiency is always achievable with sinusoidal trajectories, nonsinusoidal trajectories are found to considerably improve performance: a 110% increase of the thrust force was obtained in the best studied case. This improvement is mainly related to the modification of the heaving motion, more specifically the increase of the heaving speed at maximum pitching angle of the foil. The analysis of the flow vorticity and wake structure also enables to explain the drop of the propulsive efficiency for nonsinusoidal trajectories
Experimental study of a cavitating centrifugal pump during fast starts-up
The start-up of rocket engine turbopumps is generally performed only in a few seconds. It implies that these pumps reach their nominal operating conditions after only a few rotations. During these first rotations of the blades, the flow evolution in the pump is governed by transient phenomena, based mainly on the flow rate and rotation speed evolution. These phenomena progressively become negligible when the steady behavior is reached. The pump transient behavior induces significant pressure fluctuations which may result in partial flow vaporization, i.e. cavitation. An existing experimental test rig has been updated in the LML laboratory (Lille, France) for the start-ups of a centrifugal pump. The study focuses on cavitation induced during the pump start-up. Instantaneous measurement of torque, flow rate, inlet and outlet unsteady pressures, and pump rotation velocity enable to characterize the pump behavior during rapid starting periods. Three different types of fast start-up behaviors have been identified. According to the final operating point, the start-up is characterized either by a single drop of the delivery static pressure, by several low-frequency drops, or by a water hammer phenomenon that can be observed both a the inlet and outlet of the pump. A physical analysis is proposed to explain these three different types of transient flow behavior
Recommended from our members
Prediction of cavitation and induced erosion inside a high-pressure fuel pump
The operation of a high-pressure, piston-plunger fuel pump, oriented for use in the common rail circuit of modern Diesel engines for providing fuel to the injectors is investigated in the present study from a numerical perspective. Both the suction and pressurization phases of the pump stroke were simulated with the overall flow time be-ing in the order of 12•10-3 s. The topology of the cavitating flow within the pump con-figuration was captured through the use of an Equation of State (EoS) implemented in the framework of a barotropic, homogeneous equilibrium model. Cavitation was found to set in within the pressure chamber as early as 0.2•10-3 s in the operating cycle, while the minimum liquid volume fraction detected was in the order of 60% during the sec-ond period of the valve opening. Increase of the in-cylinder pressure during the final stages of the pumping stroke lead to the collapse of the previously arisen cavitation structures and three layout locations, namely the piston edge, the valve/valve-seat re-gion and the outlet orifice, were identified as vulnerable to cavitation-induced erosion through the use of cavitation-aggressiveness indicators
Recommended from our members
Performance of turbulence and cavitation models in prediction of incipient and developed cavitation
The aim of this article is to assess the impact of turbulence and cavitation models on the prediction of diesel injector nozzle flow. Two nozzles are examined, an enlarged one, operating at incipient cavitation, and an industrial injector tip, operating at developed cavitation. The turbulence model employed includes the re-normalization group k–ε, realizable k–ε and k–ω shear stress transport Reynolds-averaged Navier–Stokes models; linear pressure–strain Reynolds stress model and the wall adapting local eddy viscosity large eddy simulation model. The results indicate that all Reynolds-averaged Navier–Stokes and the Reynolds stress turbulence models have failed to predict cavitation inception due to their limitation to resolve adequately the low pressure existing inside vortex cores, which is responsible for cavitation development in this particular flow configuration. Moreover, Reynolds-averaged Navier–Stokes models failed to predict unsteady cavitation phenomena in the industrial injector. However, the wall adapting local eddy viscosity large eddy simulation model was able to predict incipient and developed cavitation, while also capturing the shear layer instability, vortex shedding and cavitating vortex formation. Furthermore, the performance of two cavitation methodologies is discussed within the large eddy simulation framework. In particular, a barotropic model and a mixture model based on the asymptotic Rayleigh–Plesset equation of bubble dynamics have been tested. The results indicate that although the solved equations and phase change formulation are different in these models, the predicted cavitation and flow field were very similar at incipient cavitation conditions. At developed cavitation conditions, standard cavitation models may predict unrealistically high liquid tension, so modifications may be essential. It is also concluded that accurate turbulence representation is crucial for cavitation in nozzle flows
- …