83 research outputs found

    Cervico-vaginal mucus (CVM) – an accessible source of immunologically informative biomolecules

    Get PDF
    peer-reviewedCervico-vaginal mucus (CVM), the product of epithelial cells lining the uterus, cervix and vagina, is secreted to facilitate uterine lubrication and microbial clearance. Predominantly composed of water and mucins, CVM also contains high levels of immuno-active proteins such as immunoglobulin A (IgA), lactoferrin and lysozyme which protect against infection by blocking adhesion and mediating microbial killing. The repertoire of cytokines, chemokines and antimicrobial peptides is predominantly generated by the secretions of endometrial epithelial cells into the uterine lumen and concentrated in the CVM. The quantity and relative proportions of these inflammatory biomarkers are affected by diverse factors including the estrus cycle and health status of the animal and therefore potentially provide important diagnostic and prognostic indicators. We propose that measuring molecular signatures in bovine CVM could be a useful approach to identifying and monitoring genital tract pathologies in beef and dairy cows

    Risk factors for the development of depression in patients with hepatitis C taking interferon-α

    Get PDF
    Interferon-α, currently used for the treatment of hepatitis C, is associated with a substantially elevated risk of depression. However, not everyone who takes this drug becomes depressed, so it is important to understand what particular factors may make some individuals more ‘at risk’ of developing depression than others. Currently there is no consensus as to why interferon-induced depression occurs and the range of putative risk factors is wide and diverse. The identification of risk factors prior to treatment may allow identification of patients who will become depressed on interferon, allowing the possibility of improved treatment support and rates of treatment adherence. Here, we consolidate and review the literature on risk factors, and we discuss the potential confounds within the research examined in order to better isolate the risk factors that may be important in the development of depression in these patients and which might help predict patients likely to become depressed on treatment. We suggest that interactions between psychobehavioral, genetic, and biological risk factors are of particular importance in the occurrence of depression in patients with hepatitis C taking interferon-α

    The CD4+ T cell methylome contributes to a distinct CD4+ T cell transcriptional signature in Mycobacterium bovis-infected cattle

    Get PDF
    peer-reviewedWe hypothesised that epigenetic regulation of CD4+ T lymphocytes contributes to a shift toward a dysfunctional T cell phenotype which may impact on their ability to clear mycobacterial infection. Combined RNA-seq transcriptomic profiling and Reduced Representation Bisulfite Sequencing identified 193 significantly differentially expressed genes and 760 differentially methylated regions (DMRs), between CD4+ T cells from M. bovis infected and healthy cattle. 196 DMRs were located within 10 kb of annotated genes, including GATA3 and RORC, both of which encode transcription factors that promote TH2 and TH17 T helper cell subsets respectively. Gene-specific DNA methylation and gene expression levels for the TNFRSF4 and Interferon-Îł genes were significantly negatively correlated suggesting a regulatory relationship. Pathway analysis of DMRs identified enrichment of genes involved in the anti-proliferative TGF-ÎČ signaling pathway and TGFB1 expression was significantly increased in peripheral blood leukocytes from TB-infected cattle. This first analysis of the bovine CD4+ T cell methylome suggests that DNA methylation directly contributes to a distinct gene expression signature in CD4+ T cells from cattle infected with M. bovis. Specific methylation changes proximal to key inflammatory gene loci may be critical to the emergence of a non-protective CD4+ T cell response during mycobacterial infection in cattle

    Endometrial epithelial cells are potent producers of tracheal antimicrobial peptide and serum amyloid A3 gene expression in response to E. coli stimulation

    Get PDF
    Endometrial epithelial cells play a critical role in mediating inflammatory mechanisms key to bacterial clearance and tissue re-modelling postpartum. This study characterised innate immune gene expression by bovine endometrial epithelial cells from three animals in response to Escherichia coli, a common cause of bovine uterine disease. Expression of key innate immune genes, encoding Toll-like receptor 4 (TLR4), the transcription factor NFkB1, the chemokine interleukin 8 (IL8), inflammatory cytokines (interleukins IL1ÎČ, IL6; tumour necrosis factor, TNF), ÎČ-defensins (lingual antimicrobial peptides LAP, tracheal antimicrobial peptide TAP) and acute phase proteins (haptoglobin, HP; serum amyloid A, SAA3) was examined in endometrial epithelial cells stimulated with E. coli for 6 and 24 h using qRT-PCR. Expression of all genes was increased significantly (P < 0.05) 6 h post-stimulation. Expression of IL1b, TNF and SAA3 genes was increased by 121-, 357- and 721-fold, respectively (P < 0.05). Twenty four hours post-stimulation, IL1b, IL6, IL8, TNF and LAP gene expression was decreased compared to 6 h, whereas TAP and SAA3 expression was further increased to 209- and 3452-fold (P < 0.05). E. coli driven expression of immune effector genes demonstrates potent immune, antimicrobial and regulatory capacity of endometrial epithelial cells to respond to this pathogen.http://www.elsevier.com/locate/vetimmhb2013ab201

    Qualitative and quantitative differences in endometrial inflammatory gene expression precede the development of bovine uterine disease

    Get PDF
    peer-reviewedThe transcriptome of the endometrium early postpartum was profled to determine if infammatory gene expression was elevated in cows which subsequently developed uterine disease. Endometrial cytobrush samples were collected at 7 days postpartum (DPP) from 112 Holstein–Friesian dairy cows, from which 27 were retrospectively chosen for RNA-seq on the basis of disease classifcation [ten healthy and an additional 17 diagnosed with cytological endometritis (CYTO), or purulent vaginal discharge (PVD)] at 21 DPP. 297 genes were signifcantly diferentially expressed between cows that remained healthy versus those that subsequently developed PVD, including IL1A and IL1B (adjusted p < 0.05). In contrast, only 3 genes were signifcantly diferentially expressed in cows which subsequently developed CYTO. Accounting for the early physiological infammatory status present in cows which do not develop disease enhanced the detection of diferentially expressed genes associated with CYTO and further expression profling in 51 additional cows showed upregulation of multiple immune genes, including IL1A, IL1B and TNFA. Despite the expected heterogeneity associated with natural infection, enhanced activation of the infammatory response is likely a key contributory feature of both PVD and CYTO development. Prognostic biomarkers of uterine disease would be particularly valuable for seasonal-based dairy systems where any delay to conception undermines sustainability

    Differential Expression of NK Receptors CD94 and NKG2A by T Cells in Rheumatoid Arthritis Patients in Remission Compared to Active Disease

    Get PDF
    TNF inhibitors (TNFi) have revolutionised the treatment of rheumatoid arthritis (RA). Natural killer (NK) cells and Natural Killer Cell Receptor+ T (NKT) cells comprise important effector lymphocytes whose activity is tightly regulated through surface NK receptors (NKRs). Dysregulation of NKRs in patients with autoimmune diseases has been shown, however little is known regarding NKRs expression in patients with TNFi-induced remission and in those who maintain remission vs disease flare following TNFi withdrawal.Patients with RA were recruited for this study, (i) RA patients in clinical remission following a minimum of one year of TNFi therapy (n = -15); (2) Active RA patients, not currently or ever receiving TNFi (n = 18); and healthy control volunteers (n = 15). Patients in remission were divided into two groups: those who were maintained on TNFi and those who withdrew from TNFi and maintained on DMARDS. All patients underwent full clinical assessment. Peripheral blood mononuclear cells were isolated and NKR (CD94, NKG2A, CD161, CD69, CD57, CD158a, CD158b) expression on T-(CD3+CD56-), NK-(CD3-CD56+) and NKT-(CD3+CD56+) cells was determined by flow cytometry.Following TNFi withdrawal, percentages and numbers of circulating T cells, NK cells or NKT cell populations were unchanged in patients in remission versus active RA or HCs. Expression of the NKRs CD161, CD57, CD94 and NKG2A was significantly increased on CD3+CD56-T cells from patients in remission compared to active RA (p<0.05). CD3+CD56-T cell expression of CD94 and NKG2A was significantly increased in patients who remained in remission compared with patients whose disease flared (p<0.05), with no differences observed for CD161 and CD57. CD3+CD56- cell expression of NKG2A was inversely related to DAS28 (r = -0.612, p<0.005).High CD94/NKG2A expression by T cells was demonstrated in remission patients following TNFi therapy compared to active RA, while low CD94/NKG2A were associated with disease flare following withdrawal of therapy

    Characterisation and expression profile of the bovine cathelicidin gene repertoire in mammary tissue

    Get PDF
    BACKGROUND: Cathelicidins comprise a major group of host-defence peptides. Conserved across a wide range of species, they have several functions related to host defence. Only one cathelicidin has been found in humans but several cathelicidin genes occur in the bovine genome. We propose that these molecules may have a protective role against mastitis. The aim of this study was to characterise the cathelicidin gene-cluster in the bovine genome and to identify sites of expression in the bovine mammary gland. RESULTS: Bioinformatic analysis of the bovine genome (BosTau7) revealed seven protein-coding cathelicidin genes, CATHL1-7, including two identical copies of CATHL4, as well as three additional putative cathelicidin genes, all clustered on the long arm of chromosome 22. Six of the seven protein-coding genes were expressed in leukocytes extracted from milk of high somatic cell count (SCC) cows. CATHL5 was expressed across several sites in the mammary gland, but did not increase in response to Staphylococcus aureus infection. CONCLUSIONS: Here, we characterise the bovine cathelicidin gene cluster and reconcile inconsistencies in the datasets of previous studies. Constitutive cathelicidin expression in the mammary gland suggests a possible role for these host defence peptides its protection.An Irish Department of Agriculture, Fisheries and Food Research Stimulus Fund Grant (RSF 06-340).http://www.biomedcentral.com/bmcgenomics/am201

    From Your Nose to Your Toes: A Review of Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic‒Associated Pernio

    Get PDF
    Despite thousands of reported patients with pandemic-associated pernio, low rates of seroconversion and PCR positivity have defied causative linkage to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pernio in uninfected children is associated with monogenic disorders of excessive IFN-1 immunity, whereas severe COVID-19 pneumonia can result from insufficient IFN-1. Moreover, SARS-CoV-2 spike protein and robust IFN-1 response are seen in the skin of patients with pandemic-associated pernio, suggesting an excessive innate immune skin response to SARS-CoV-2. Understanding the pathophysiology of this phenomenon may elucidate the host mechanisms that drive a resilient immune response to SARS-CoV-2 and could produce relevant therapeutic targets

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Full text link
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2
    • 

    corecore