13 research outputs found

    Cardio-metabolic effects of HIV protease inhibitors (Lopinavir/Ritonavir)

    Get PDF
    Publication of this article was funded by the Stellenbosch University Open Access Fund.The original publication is available at http://www.plosone.org/Although antiretroviral treatment decreases HIV-AIDS morbidity/mortality, long-term side effects may include the onset of insulin resistance and cardiovascular diseases. However, the underlying molecular mechanisms responsible for highly active antiretroviral therapy (HAART)-induced cardio-metabolic effects are poorly understood. In light of this, we hypothesized that HIV protease inhibitor (PI) treatment (Lopinavir/Ritonavir) elevates myocardial oxidative stress and concomitantly inhibits the ubiquitin proteasome system (UPS), thereby attenuating cardiac function. Lopinavir/Ritonavir was dissolved in 1% ethanol (vehicle) and injected into mini-osmotic pumps that were surgically implanted into Wistar rats for 8 weeks vs. vehicle and sham controls. We subsequently evaluated metabolic parameters, gene/protein markers and heart function (ex vivo Langendorff perfusions). PI-treated rats exhibited increased serum LDL-cholesterol, higher tissue triglycerides (heart, liver), but no evidence of insulin resistance. In parallel, there was upregulation of hepatic gene expression, i.e. acetyl-CoA carboxylase b and 3-hydroxy-3-methylglutaryl-CoA-reductase, key regulators of fatty acid oxidation and cholesterol synthesis, respectively. PI-treated hearts displayed impaired cardiac contractile function together with attenuated UPS activity. However, there was no significant remodeling of hearts exposed to PIs, i.e. lack of ultrastructural changes, fibrosis, cardiac hypertrophic response, and oxidative stress. Western blot analysis of PI-treated hearts revealed that perturbed calcium handling may contribute to the PI-mediated contractile dysfunction. Here chronic PI administration led to elevated myocardial calcineurin, nuclear factor of activated T-cells 3 (NFAT3), connexin 43, and phosphorylated phospholamban, together with decreased calmodulin expression levels. This study demonstrates that early changes triggered by PI treatment include increased serum LDL-cholesterol levels together with attenuated cardiac function. Furthermore, PI exposure inhibits the myocardial UPS and leads to elevated calcineurin and connexin 43 expression that may be associated with the future onset of cardiac contractile dysfunction.Stellenbosch UniversityPublishers' versio

    Phase II Efficacy and Pharmacogenomic Study of Selumetinib (AZD6244; ARRY-142886) in Iodine-131 Refractory Papillary Thyroid Carcinoma with or without Follicular Elements

    No full text
    PURPOSE: A multicenter, open-label, phase II trial was conducted to evaluate the efficacy, safety, and tolerability of selumetinib in iodine-refractory papillary thyroid cancer (IRPTC). EXPERIMENTAL DESIGN: Patients with advanced IRPTC with or without follicular elements and documented disease progression within the preceding 12 months were eligible to receive selumetinib at a dose of 100 mg twice daily. The primary endpoint was objective response rate using Response Evaluation Criteria in Solid Tumors. Secondary endpoints were safety, overall survival, and progression-free survival (PFS). Tumor genotype including mutations in BRAF, NRAS, and HRAS was assessed. RESULTS: Best responses in 32 evaluable patients out of 39 enrolled were 1 partial response (3%), 21 stable disease (54%), and 11 progressive disease (28%). Disease stability maintenance occurred for 16 weeks in 49%, 24 weeks in 36%. Median PFS was 32 weeks. BRAF V600E mutants (12 of 26 evaluated, 46%) had a longer median PFS compared with patients with BRAF wild-type (WT) tumors (33 versus 11 weeks, respectively, HR = 0.6, not significant, P = 0.3). The most common adverse events and grades 3 to 4 toxicities included rash, fatigue, diarrhea, and peripheral edema. Two pulmonary deaths occurred in the study and were judged unlikely to be related to the study drug. CONCLUSIONS: Selumetinib was well tolerated but the study was negative with regard to the primary outcome. Secondary analyses suggest that future studies of selumetinib and other mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK; MEK) inhibitors in IRPTC should consider BRAF V600E mutation status in the trial design based on differential trends in outcome

    Metabolic, gene and histologic characterization (n = 8)

    No full text
    <p>. A) Body weight; B) Serum LDL-cholesterol levels; C) Heart tissue triglycerides; D) Heart and liver gene regulation; and E) HE staining for various tissues following PI treatment. *p<0.05, **p<0.01, ***p<0.001 vs. sham; #p<0.05, ##p<0.01, ###p<0.001 vs. vehicle.</p

    Baseline profile of hepatic non-oxidative metabolic pathways (n = 8).

    No full text
    <p>A) AGE; B) PKC; C) Polyol pathway (D-sorbitol); D) HBP (<i>O-</i>GlycNAcylation); and E) Pentose phosphate pathway (transketolase). For HPB, values were normalized to loading controls as described in Methods section. *p<0.05 vs. sham; #p<0.05 vs. vehicle. *p<0.05 vs. sham; #p<0.05 vs. vehicle.</p
    corecore