1,069 research outputs found

    Lema\^{i}tre's Hubble relationship

    Full text link
    Edwin Hubble is often credited with discovering the expanding Universe based on spectra taken by him. This statement is incorrect and we feel that it is the responsibility of those who are aware of the historical facts to set the record straight.Comment: 3 page letter, more accurately reflects letter published in Physics Today, August 201

    Optical and near infrared observations of SN 1998bu

    Full text link
    Infrared and optical spectra of SN 1998bu at an age of one year after explosion are presented. The data show evidence for the radioactive decay of 56Co to 56Fe, long assumed to be the powering source for the supernova light curve past maximum light. The spectra provide direct evidence for at least 0.4 solar masses of iron being present in the ejecta of the supernova. The fits to the data also show that the widths of the emission lines increase with time. Photometric measurements in the H-band show that the supernova is not fading during the observation period. This is consistent with theoretical expectations.Comment: accepted A&A, 7 pages, 9 figure

    Modeling RR Tel through the Evolution of the Spectra

    Full text link
    We investigate the evolution of RR Tel after the outburst by fitting the emission spectra in two epochs. The first one (1978) is characterized by large fluctuations in the light curve and the second one (1993) by the slow fading trend. In the frame of a colliding wind model two shocks are present: the reverse shock propagates in the direction of the white dwarf and the other one expands towards or beyond the giant. The results of our modeling show that in 1993 the expanding shock has overcome the system and is propagating in the nearby ISM. The large fluctuations observed in the 1978 light curve result from line intensity rather than from continuum variation. These variations are explained by fragmentation of matter at the time of head-on collision of the winds from the two stars. A high velocity (500 km/s) wind component is revealed from the fit of the SED of the continuum in the X-ray range in 1978, but is quite unobservable in the line profiles. The geometrical thickness of the emitting clumps is the critical parameter which can explain the short time scale variabilities of the spectrum and the trend of slow line intensity decrease.Comment: 26 pages, LaTeX (including 5 Tables) + 6 PostScript figures. To appear in "The Astrophysical Journal

    Illumination in symbiotic binary stars: Non-LTE photoionization models. II. Wind case

    Get PDF
    We describe a non-LTE photoionization code to calculate the wind structure and emergent spectrum of a red giant wind illuminated by the hot component of a symbiotic binary system. We consider spherically symmetric winds with several different velocity and temperature laws and derive predicted line fluxes as a function of the red giant mass loss rate, \mdot. Our models generally match observations of the symbiotic stars EG And and AG Peg for \mdot about 10^{-8} \msunyr to 10^{-7} \msunyr. The optically thick cross- section of the red giant wind as viewed from the hot component is a crucial parameter in these models. Winds with cross-sections of 2--3 red giant radii reproduce the observed fluxes, because the wind density is then high, about 10^9 cm^{-3}. Our models favor winds with acceleration regions that either lie far from the red giant photosphere or extend for 2--3 red giant radii.Comment: 51 pages, LaTeX including three tables, requires 15 Encapsulated Postscript figures, to appear in Ap

    Signature of Electron Capture in Iron-Rich Ejecta of SN 2003du

    Full text link
    Late-time near-infrared and optical spectra are presented for the normal-bright SN2003du. At about 300 days after the explosion, the emission profiles of well isolated [FeII] lines (in particular that of the strong 1.644mu feature) trace out the global kinematic distribution of radioactive material in the expanding. In SN2003du, the 1.644 mu [FeII] line shows a flat-topped, profile, indicative of a thick but hollow-centered expanding shell, rather than a strongly-peaked profile that would be expected from a ``center-filled'' distribution.Based on detailed models for exploding Chandrasekhar mass white dwarfs, we show that the feature is consistent with spherical explosion models.Our model predicts central region of non-radioactive electron-capture elements up to 2500--3000km/s as a consequence of burning under high density, and an extended region of 56Ni up to 9,000--10,000km/s. Furthermore our analysis indicates that the 1.644mu [FeII] profile is not consistent with strong mixing between the regions of electron- capture isotopes and the 56Ni layers as is predicted by detailed 3D models for nuclear deflagration fronts. We discuss the possibility that the flat-topped profile could be produced as a result of an infrared catastrophe and conclude that such an explanation is unlikely. We put our results in context to other SNeIa and briefly discuss the implications of our result for the use of SNe Ia as cosmological standard candles.Comment: 12 pages + 8 figures, ApJ (in press, Dec. 20, 2004) For high resolution figures send E-mail to [email protected]

    Silicates in D-type symbiotic stars: an ISO overview

    Get PDF
    We investigate the IR spectral features of a sample of D-type symbiotic stars. Analyzing unexploited ISO-SWS data, deriving the basic observational parameters of dust bands and comparing them with respect to those observed in other astronomical sources, we try to highlight the effect of environment on grain chemistry and physic. We find strong amorphous silicate emission bands at 10 micron and 18 micron in a large fraction of the sample. The analysis of the 10 micron band, along with a direct comparison with several astronomical sources, reveals that silicate dust in symbiotic stars shows features between the characteristic circumstellar environments and the interstellar medium. This indicates an increasing reprocessing of grains in relation to specific symbiotic behavior of the objects. A correlation between the central wavelength of the 10 and 18 micron dust bands is found. By the modeling of IR spectral lines we investigate also dust grains conditions within the shocked nebulae. Both the unusual depletion values and the high sputtering efficiency might be explained by the formation of SiO moleculae, which are known to be a very reliable shock tracer. We conclude that the signature of dust chemical disturbance due to symbiotic activity should be looked for in the outer, circumbinary, expanding shells where the environmental conditions for grain processing might be achieved. Symbiotic stars are thus attractive targets for new mid-infrared and mm observations.Comment: 24 pages, 6 figures, 5 tables - to be published in A

    Star Formation in M51 Triggered by Galaxy Interaction

    Get PDF
    We have mapped the inner 360'' regions of M51 in the 158micron [CII] line at 55'' spatial resolution using the Far-infrared Imaging Fabry-Perot Interferometer (FIFI) on the Kuiper Airborne Observatory (KAO). The emission is peaked at the nucleus, but is detectable over the entire region mapped, which covers much of the optical disk of the galaxy. There are also two strong secondary peaks at ~43% to 70% of the nuclear value located roughly 120'' to the north-east, and south-west of the nucleus. These secondary peaks are at the same distance from the nucleus as the corotation radius of the density wave pattern. The density wave also terminates at this location, and the outlying spiral structure is attributed to material clumping due to the interaction between M51 and NGC5195. This orbit crowding results in cloud-cloud collisions, stimulating star formation, that we see as enhanced [CII] line emission. The [CII] emission at the peaks originates mainly from photodissociation regions (PDRs) formed on the surfaces of molecular clouds that are exposed to OB starlight, so that these [CII] peaks trace star formation peaks in M51. The total mass of [CII] emitting photodissociated gas is ~2.6x10^{8} M_{sun}, or about 2% of the molecular gas as estimated from its CO(1-0) line emission. At the peak [CII] positions, the PDR gas mass to total gas mass fraction is somewhat higher, 3-17%, and at the secondary peaks the mass fraction of the [CII] emitting photodissociated gas can be as high as 72% of the molecular mass.... (continued)Comment: 14 pages, 6 figures, Accepted in ApJ (for higher resolution figures contact the author

    Dust in the Ionized Medium of the Galaxy: GHRS Measurements of Al III and S III

    Get PDF
    We present interstellar absorption line measurements of the ions S III and Al III towards six stars using archival Goddard High Resolution Spectrograph data. The ions Al III and S III trace heavily depleted and non-depleted elements, respectively, in ionized gas. We use the photoionization code CLOUDY to derive the ionization correction relating N(Al III)/N(S III) to the gas-phase abundance [Al/S]_i in the ionized gas. For spectral types considered here, the corrections are small and independent of the assumed ionization parameter. Using the results of these photoionization models, we find [Al/S]_i = -1.0 in the ionized gas towards three disk stars. These values of [Al/S]_i (=[Al/H]_i) imply that Al-bearing grains are present in the ionized nebulae around these stars. If the WIM of the Galaxy is photoionized by OB stars, our data for two halo stars imply [Al/S]_i = -0.4 to -0.5 in the WIM and thus the presence of dust grains containing Al in this important phase of the ISM. While photoionization appears to be the most likely origin of the ionization for Al III and S III, we cannot rule out confusion from the presence of hot, collisionally ionized gas along two sightlines. We find that [Al/S]_i in the ionized gas along the six sightlines is anti-correlated with the electron density and average sightline neutral density. The degree of grain destruction in the ionized medium of the Galaxy is not much higher than in the warm neutral medium. The existence of grains in the ionized regions studied here has important implications for the thermal balance of these regions. (Abstract Abridged)Comment: 30 pages including 8 embedded tables and 8 embedded figures. Accepted for publication in the Astrophysical Journa
    • …
    corecore