58 research outputs found

    A Model For Manufacturing Sustainability In Manufacturing Operations

    Get PDF
    This Economically, environmentally, and societally are the integrated three pillars of sustainability. Thus, it is important for manufacturing companies to recognise the elements of sustainability in their operations. To this date, there is still a lack of studies on the fundamental elements of sustainability in the context of manufacturing operations. Therefore, this study aims to develop a model of MS in manufacturing operations. A thorough statistical analysis on literature review of sustainability that is relevant to manufacturing operations was done in order to determine the fundamental elements of MS. Pareto 80-20 rule was applied in determining the most significant fundamental elements of MS. As a result, a model of MS has been developed based on the concept of Input-Output system (I-O system) in manufacturing that consist of three major paths: (i) Input, (ii) Process, and, (iii) Output. Here, the fundamental elements of MS are categorised by the major path. In this case, the fundamental elements are divided into four different paths: (i) Sustainability Drivers as the input, (ii) Sustainability Enablers and (iii) Sustainability Measures as the process/operation, and (iv) Sustainability Impacts as the output

    Facile synthesis of fibrous zeolite Y with a radial wrinkle structure

    Get PDF
    In this study, typical zeolite Y was successfully transformed into dendritic morphology named as Fibrous Zeolite Y (FZY) by employing microwave-assisted microemulsion system. The physicochemical properties of the ZY and FZY were investigated by XRD, N2 physisorption, FTIR and TEM. The BET analysis showed that the surface area of FZY is lower than ZY. with the value of 406 m2g-1 and 736 m2g-1, respectively. However, the FZY possesses higher porosity than ZY due to the formation of radial wrinkle fibre observed from TEM analysis. This provide a huge amount of interparticle pore that facilitate the molecules absorption within the material under a minimal obstruction, thus improving the internal surface accessibility of FZY. The findings of this study predicted that FZY would find widespread use in catalysis, waste water treatment, energy storage, drug delivery, and other fields

    Catalytic Performance of La-Ni/Al2O3 Catalyst for CO2 Reforming of Ethanol

    Get PDF
    Bio-derived ethanol has been considered as an attractive and alternative feedstock for dry or steam reforming reactions to generate renewable hydrogen, which may be used for replacement of conventional fossil fuels. Ethanol dry reforming (EDR) is an environmentally-friendly process since it transforms greenhouse gas, CO2 to value-added products and ethanol can be easily obtained from biomass which is free of catalyst poisons (i.e. sulphur-containing compounds). However, there are currently limited studies regarding syngas production from EDR [1, 2]. Ni-based catalysts are commonly used for reforming reactions due to its capability of C-C bond rupture, relatively low cost and high availability compared to precious metals [2]. Nevertheless, carbonaceous deposition may considerably deteriorate catalytic activity and stability of Ni-based catalysts. La promoter reportedly hindered carbon deposition and improved catalytic activity [3]. Hence, the objective of this research was to investigate the effect of La promotion on 10%Ni/Al2O3 catalyst for EDR

    Evaluation of NiO supported on waste sludge for the degradation of 2- chlorophenol

    Get PDF
    Due to the harmful consequences for the environment and human health, chlorophenol is regarded as a hazardous pollutant. This study aims to utilize waste sludge material loaded with NiO (NiO/sludge) as a cost-effective adsorbent for the treatment of 2-Chlorophenol (2-CP). The properties of the NiO/sludge were determined by FTIR and XRD analysis. In a batch study of 2-CP degradation, the effectiveness of NiO/sludge was assessed under a variety of conditions, including pH solution (2–8), temperature (28–50 °C), 2-CP initial concentration (20–80 mg/L), and NiO/sludge dosage (10–40 mg/100 mL). The maximum 2-CP degradation of 98% was reached at 50℃, pH 4, 50 mg/L 2-CP, and 0.3 g of NiO/sludge within 3 h of the reaction process. Under the appropriate circumstances, the optimal cation is exchanged among 2-CP molecules and the surface-active NiO/sludge adsorbent sites. This discovery observed that abundant waste sludge from conventional wastewater treatment plants can be further investigated and used as potential natural adsorbent material for the treatment of industrial effluents

    Pollen characters of Firmiana Malayana Kostem. (Malvaceae: Sterculoideae) in Malaysia

    Get PDF
    Firmiana malayana also known as "Bullocks eye or Mata Lembu" in Malaysia and can be found along riverbanks and open forests in Peninsular Malaysia and seldom planted in populated areas. The flowers of the Firmiana malayana are vivid orange in colour, on tassels up to 12?cm long. Usually this species will shed its leaves after a dry period and remains bare for six to eight weeks. The objective of this study is to determine the pollen morphological characteristics of the Firmiana malayana in order to add more information on the species under the family of Sterculiaceae in Malaysia. Methods for this study includes acetolysis technique for the pollens and viewed under light microscope and scanning electron microscope. Results shown that the pollens of the species Firmiana malayana appeared to be monad and dyad with tricolporate class with both porate and colpus present. The shape of this species is prolate with P/E index of 1.49. This species was considered as medium-size pollens as the pollens ranges from 26-36?μm. The ornamentation of the pollen is reticulate where the ornamentation is network-like pattern formed by exine elements of lumen and murus. Based on the results obtained, pollen morphology is a great tool that can aid in plant identification and classification as well having taxonomic values

    Enhanced glycerol dry reforming over Ni/SBA-15 synthesized from palm oil ash: Effect of GHSV

    Get PDF
    The current research investigated the effect of gas hourly space velocity toward the GDR reaction using Ni/ SBA-15 catalyst derived from palm oil ash (P). The SBA-15(P) was prepared by hydrothermal technique and loaded with 3 % Ni via ultrasonic-assisted impregnation technique. The physio-chemical features of the unloaded and loaded Ni on the SBA-15(P) were characterized via BET, FTIR, XRD, H2 TPR, and TEM. In a vertical reactor made up of stainless steel operating at 800 °C, 1 atm, with various gas hourly space velocities (18000, 24000, 30000, and 36000 mL/g-1 s−1), the catalytic performance of the Ni/SBA-15(P) was investigated. The exceptional inclusion of active Ni particles with the SBA-15(P) support and strong Ni-O-Si interaction were demonstrated by FTIR, H2 TPR, and TEM, respectively. The highest catalytic activity (glycerol conversion = 43.24 %, H2 yield = 30.60 % and CO yield = 59.76 %) of Ni/SBA-15(P) was achieved at 24000 mL/g-1s−1. The higher the GHSV (30000 and 36000 mL/g-1s−1), the lower the syngas yield (H2 and CO) and glycerol conversion due to the less CO2 and glycerol molecules adsorbed on the active centers of the Ni/SBA-15(P) catalyst. Moreover, shorter contact time interaction between reactant molecules and the active site would build up the pressure inside the reactor system and favor carbon plugging during the catalytic process. Meanwhile, Ni loaded on SBA-15(P) at lower GHSV (20000 mL/g-1s−1) was low catalytic activity due to the limitation of existing molecules interacting with catalyst active sites. At lower GHSV (20000 mL/g-1s−1), Ni/SBA-15(P) exhibited poor catalytic performance because of the limited ability of molecules to interact with the catalyst active sites

    Enhanced hydrogen generation from biodiesel-waste glycerol using Ni/SBA-15 catalyst synthesized from boiler ash

    Get PDF
    The successful synthesis of the mesostructured SBA-15 derived from extracted boiler ash silica (BA) with distinct Ni loading (15 wt%, 20 wt%, and 25 wt%) towards H2 production from CO2 and C3H8O3 was explored. The catalysts prepared by the ultrasonic-assisted method were subjected to 8 h of GDR at 800 °C. The XRD and N2 sorption revealed reduced area and crystallinity in 25 wt% Ni versus 15 wt% Ni catalyst. 20 Ni/SBA-15(BA) exhibited a larger area (234 m2/g), aperture (8.99 nm), and small NiO crystallite (18.34 nm), implying well-dispersed Ni species on SBA-15(BA) surface. 20 Ni/SBA-15(BA) displayed the highest GDR catalytic activity (57 %), credited to its accessible structure, strong Ni–O–Si bonding, and good Ni dispersion that reduced coke formation (9.8 % carbon). This discovery highlights the excellent performance of 20 wt% of Ni loaded on SBA-15 by using green silica source extracted from waste material for H2 fuel production

    Fruit morphology of Durio zibethinus L. in Jelebu, Negeri Sembilan, Malaysia

    Get PDF
    Background: Jelebu is one of Negeri Sembilan districts of Malaysia, famous for its wide variety of D. zibethinus. It is also recognized as the top hotspot area for consumers looking for genuine Durian Kampung. This study aimed at discovering and recording significant morphological data in identification and classification of D. zibethinus fruit in Jelebu. Methods: Fifty-three accessions of durian were observed from January 2020 to September 2020 in accordance with Malaysia’s Department of Agriculture guidelines. Result: Forty-one parameters were compiled and divided into two primary morphological data sets: external and internal structures. Size, shape, color and aril characteristics of fruits were several engrossing parameters for identifying and classifying D. zibethinus varieties. Fruit weight varies between 665 g and 2.7 kg, depending on size. The results also revealed six different variants in the fruit shape and color. Aril characteristics included a variety of aril color and thickness ranging from 0.23 cm to 1.17 cm. Therefore, this research revealed that external and internal morphological data from durian fruits were valuable for recognizing and categorizing D. zibethinus Jelebu variants

    Impacts of conceive-design-implement-operate knowledge and skills for innovative capstone project

    Get PDF
    Nowadays, the competitions among countries to recruit engineering students as workers do not focus on talents, but also on the reserve of it. The advancement of education in engineering field plays a big part in enhancing comprehensive domestic strength because the scientific revolution will contribute to important modifications of the industrial landscape. Therefore, Conceive- Design-Implement-Operate (CDIO) understanding and techniques are required for enhancing this field of education particularly for innovation of capstone project. Thus, this study was identified student knowledge and skills consist of teamwork, problem-solving, and communication skills of the CDIO in capstone project involved two faculties which are Faculty of Biosciences & Medical Engineering (FBME) and Faculty of Electrical Engineering (FKE) at Universiti Teknologi Malaysia (UTM). Our respondents consist of 28 and 30 of third-year students from FBME and FKE respectively. Besides, this study also was identified the importance of the CDIO approach in the innovative capstone project. The method that used was a quantitative survey by using 5 Likert scale questionnaires. The average mean for all research questions indicated that the majority of respondents agreed that the CDIO knowledge and skills in the capstone project are important in engineering education. Hence, the engineering students must possess not only the skills such as teamwork, problem-solving, and communication but also needs more knowledge that helps them to employability and adapt to real-world engineering problems

    Facile synthesis of fibrous Faujasite Y supported Ni (Ni/FFY) catalyst for hydrogen production via glycerol dry reforming

    Get PDF
    In this study, the dendritic structure of Ni-supported Fibrous Faujasite Y (Ni/FFY) catalyst was successfully synthesized by employing a hydrothermal-assisted microemulsion system and subsequently tested in glycerol dry reforming to produce syngas. FFY possesses high porosity due to the formation of radial wrinkle fibre observed from TEM analysis. This provides a huge amount of interparticle pores that facilitate the absorption of the molecules within the material under a minimum hindrance, hence boosting the interior surface accessibility of Ni/FFY. This exclusive morphology contributed to the enhancement in the amount of accessible Ni active sites, resulting in the good activity of Ni/FFY (C3H8O3 conversion = 56.28 %, CO yield = 70.14 %, and H2 yield = 49.80 %). The extraordinary physicochemical properties of Ni/FFY and outstanding catalytic performance in glycerol dry reforming proved its capability as a sustainable catalyst in transforming waste byproduct (glycerol) and greenhouse gas (CO2) to clean energy (H2). This finding presents a pioneering fibrous zeolite catalyst for hydrogen generation in glycerol reforming
    corecore