96 research outputs found

    Future non-linear stability of the Einstein-Vlasov system with reflection Bianchi II and VI0 symmetry

    No full text
    Assuming that the space-time is close to special solutions which will play the role of the ω-limit and that the maximal velocity of the particles is small, we have been able to show that for reflection symmetric Bianchi II and reflection symmetric Bianchi VI0 spacetimes with collisionless matter the asymptotic behaviour at late times is close to the special case of dust. The key was a bootstrap argument

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    No full text
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    Full text link
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010, to appear in Journal of Physics: Conference Series (JPCS

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    Full text link
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010, to appear in Journal of Physics: Conference Series (JPCS

    Late-time behaviour of the Einstein-Vlasov system with Bianchi I symmetry

    Full text link
    The late-time behaviour of the Einstein-dust system is well understood for homogeneous spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that one is close to the unique stationary solution which is the attractor of the Einstein-dust system.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010, to appear in Journal of Physics: Conference Series (JPCS

    Future non-linear stability for reflection symmetric solutions of the Einstein-Vlasov system of Bianchi types II and VI0_0

    Full text link
    Using the methods developed for the Bianchi I case we have shown that a boostrap argument is also suitable to treat the future non-linear stability for reflection symmetric solutions of the Einstein-Vlasov system of Bianchi types II and VI0_0. These solutions are asymptotic to the Collins-Stewart solution with dust and the Ellis-MacCallum solution respectively. We have thus generalized the results obtained by Rendall and Uggla in the case of locally rotationally symmetric Bianchi II spacetimes to the reflection symmetric case. However we needed to assume small data. For Bianchi VI0_0 there is no analogous previous result.Comment: 30 page

    Strong cosmic censorship for solutions of the Einstein-Maxwell field equations with polarized Gowdy symmetry

    Get PDF
    A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this it is seen that the deep results of Ringstr\"om on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.Comment: Some references have been change

    Measurement of Strange Quark Contributions to the Nucleon's Form Factors at Q^2=0.230 (GeV/c)^2

    Get PDF
    We report on a measurement of the parity-violating asymmetry in the scattering of longitudinally polarized electrons on unpolarized protons at a Q2Q^2 of 0.230 (GeV/c)^2 and a scattering angle of \theta_e = 30^o - 40^o. Using a large acceptance fast PbF_2 calorimeter with a solid angle of \Delta\Omega = 0.62 sr the A4 experiment is the first parity violation experiment to count individual scattering events. The measured asymmetry is A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{\rm sys}) 10^{-6}. The Standard Model expectation assuming no strangeness contributions to the vector form factors is A0=(6.30+0.43)106A_0=(-6.30 +- 0.43) 10^{-6}. The difference is a direct measurement of the strangeness contribution to the vector form factors of the proton. The extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2 = 0.032 +- 0.028.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Letters on Dec 11, 200

    New detectors for the kaon and hypernuclear experiments with KaoS at MAMI and with PANDA at GSI

    Get PDF
    The KaoS spectrometer at the Mainz Microtron MAMI, Germany, is perceived as the ideal candidate for a dedicated spectrometer in kaon and hypernuclei electroproduction. KaoS will be equipped with new read-out electronics, a completely new focal plane detector package consisting of scintillating fibres, and a new trigger system. First prototypes of the fibre detectors and the associated new front-end electronics are shown in this contribution. The Mainz hypernuclei research program will complement the hypernuclear experiments at the planned FAIR facility at GSI, Germany. At the proposed antiproton storage ring the spectroscopy of double Lambda hypernuclei is one of the four main topics which will be addressed by the PANDA Collaboration. The experiments require the operation of high purity germanium (HPGe) detectors in high magnetic fields (B= 1T) in the presence of a large hadronic background. The performance of high resolution Ge detectors in such an environment has been investigated.Comment: Presentation at International Symposium on the Development of Detectors for Particle, Astroparticle and Synchrotron Radiation Experiments, Stanford, Ca (SNIC06), 6 pages, LaTeX, 11 eps figure

    Exclusive electroproduction of K+ Lambda and K+ Sigma^0 final states at Q^2 = 0.030-0.055 (GeV/c)^2

    Get PDF
    Cross section measurements of the exclusive p(e,e'K+)Lambda,Sigma^0 electroproduction reactions have been performed at the Mainz Microtron MAMI in the A1 spectrometer facility using for the first time the Kaos spectrometer for kaon detection. These processes were studied in a kinematical region not covered by any previous experiment. The nucleon was probed in its third resonance region with virtual photons of low four-momenta, Q^2= 0.030-0.055 (GeV/c)^2. The MAMI data indicate a smooth transition in Q^2 from photoproduction to electroproduction cross sections. Comparison with predictions of effective Lagrangian models based on the isobar approach reveal that strong longitudinal couplings of the virtual photon to the N* resonances can be excluded from these models.Comment: 16 pages, 7 figure
    corecore