2,029 research outputs found
In-situ Particle Acceleration in Collisionless Shocks
The outflows from gamma ray bursts, active galactic nuclei and relativistic
jets in general interact with the surrounding media through collisionless
shocks. With three dimensional relativistic particle-in-cell simulations we
investigate such shocks. The results from these experiments show that
small--scale magnetic filaments with strengths of up to percents of
equipartition are generated and that electrons are accelerated to power law
distributions N(E)~E^{-p} in the vicinity of the filaments through a new
acceleration mechanism. The acceleration is locally confined, instantaneous and
differs from recursive acceleration processes such as Fermi acceleration. We
find that the proposed acceleration mechanism competes with thermalization and
becomes important at high Lorentz factors.Comment: 4 pages, 2 figures, submitted to Il nuovo cimento (4th Workshop
Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 2004
Non-Fermi Power law Acceleration in Astrophysical Plasma Shocks
Collisionless plasma shock theory, which applies for example to the afterglow
of gamma ray bursts, still contains key issues that are poorly understood. In
this paper we study charged particle dynamics in a highly relativistic
collisionless shock numerically using ~10^9 particles. We find a power law
distribution of accelerated electrons, which upon detailed investigation turns
out to originate from an acceleration mechanism that is decidedly different
from Fermi acceleration.
Electrons are accelerated by strong filamentation instabilities in the
shocked interpenetrating plasmas and coincide spatially with the power law
distributed current filamentary structures. These structures are an inevitable
consequence of the now well established Weibel-like two-stream instability that
operates in relativistic collisionless shocks.
The electrons are accelerated and decelerated instantaneously and locally; a
scenery that differs qualitatively from recursive acceleration mechanisms such
as Fermi acceleration.
The slopes of the electron distribution power laws are in concordance with
the particle power law spectra inferred from observed afterglow synchrotron
radiation in gamma ray bursts, and the mechanism can possibly explain more
generally the origin of non-thermal radiation from shocked inter- and
circum-stellar regions and from relativistic jets.Comment: 4 pages accepted for publication in ApJ Letters. High resolution
figures are available online at http://www.astro.ku.dk/users/hededal/040855
Line formation in solar granulation: I. Fe line shapes, shifts and asymmetries
Realistic ab-initio 3D, radiative-hydrodynamical convection simulations of
the solar granulation have been applied to FeI and FeII line formation. In
contrast to classical analyses based on hydrostatic 1D model atmospheres the
procedure contains no adjustable free parameters but the treatment of the
numerical viscosity in the construction of the 3D, time-dependent,
inhomogeneous model atmosphere and the elemental abundance in the 3D spectral
synthesis. However, the numerical viscosity is introduced purely for numerical
stability purposes and is determined from standard hydrodynamical test cases
with no adjustments allowed to improve the agreement with the observational
constraints from the solar granulation. The non-thermal line broadening is
mainly provided by the Doppler shifts arising from the convective flows in the
solar photosphere and the solar oscillations. The almost perfect agreement
between the predicted temporally and spatially averaged line profiles for weak
Fe lines with the observed profiles and the absence of trends in derived
abundances with line strengths, seem to imply that the micro- and
macroturbulence concepts are obsolete in these 3D analyses. Furthermore, the
theoretical line asymmetries and shifts show a very satisfactory agreement with
observations with an accuracy of typically 50-100 m/s on an absolute velocity
scale. The remaining minor discrepancies point to how the convection
simulations can be refined further.Comment: Accepted for A&
Development of Interatomic ReaxFF Potentials for Au-S-C-H Systems
We present fully reactive interatomic potentials
for systems containing gold, sulfur, carbon, and hydrogen,
employing the ReaxFF formalism. The potential is designed
especially for simulating goldthiol systems and has been used for studying cluster deposition on self-assembled monolayers. Additionally, a large number of density functional theory calculations are reported, including molecules containing the aforementioned elements and adsorption energetics of molecules and atoms on gold
Solar Oscillations and Convection: II. Excitation of Radial Oscillations
Solar p-mode oscillations are excited by the work of stochastic,
non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the
expression for the radial mode excitation rate derived by Nordlund and Stein
(Paper I) using numerical simulations of near surface solar convection. We
first apply this expression to the three radial modes of the simulation and
obtain good agreement between the predicted excitation rate and the actual mode
damping rates as determined from their energies and the widths of their
resolved spectral profiles. We then apply this expression for the mode
excitation rate to the solar modes and obtain excellent agreement with the low
l damping rates determined from GOLF data. Excitation occurs close to the
surface, mainly in the intergranular lanes and near the boundaries of granules
(where turbulence and radiative cooling are large). The non-adiabatic pressure
fluctuations near the surface are produced by small instantaneous local
imbalances between the divergence of the radiative and convective fluxes near
the solar surface. Below the surface, the non-adiabatic pressure fluctuations
are produced primarily by turbulent pressure fluctuations (Reynolds stresses).
The frequency dependence of the mode excitation is due to effects of the mode
structure and the pressure fluctuation spectrum. Excitation is small at low
frequencies due to mode properties -- the mode compression decreases and the
mode mass increases at low frequency. Excitation is small at high frequencies
due to the pressure fluctuation spectrum -- pressure fluctuations become small
at high frequencies because they are due to convection which is a long time
scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue).
17 pages, 27 figures, some with reduced resolution -- high resolution
versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048
Defect and density evolution under high-fluence ion irradiation of Si/SiO2 heterostructures
We present molecular dynamics simulations of atomic mixing over a Si/SiO2 heterostructure interface, induced by focused Ne+ and broad Si(+ )ion-beam irradiations, using a speed-up scheme that significantly reduces the relaxation time of the cascading recoils. To assess the qualitative reliance of the chosen method, two different potential models for Si-O, Si-Si, and O-O interactions were used: the Stillinger-Weber-like Watanabe-Samela potential and the Tersoff-like Munetoh potential. Furthermore, the molecular dynamics simulations were assessed by simulating a similar case, at a total fluence of 1 x10(15) cm(-2), with the binary collision approximation. The same general atomic density profile distributions were achieved with both models; however, the binary collision approach showed shallower penetration of Si into the SiO(2 )layer. Coordination analysis of the molecular dynamics results provides strong evidence that ion mixing at high fluences leads to coordination defects, which will affect the electronic properties of the structures unless removed with annealing.Peer reviewe
Recommended from our members
Thermal stress-induced charge and structure heterogeneity in emerging cathode materials
Nickel-rich layered oxide cathode materials are attractive near-term candidates for boosting the energy density of next generation lithium-ion batteries. The practical implementation of these materials is, however, hindered by unsatisfactory capacity retention, poor thermal stability, and oxygen release as a consequence of structural decomposition, which may have serious safety consequences. The undesired side reactions are often exothermic, causing complicated electro-chemo-mechanical interplay at elevated temperatures. In this work, we explore the effects of thermal exposure on chemically delithiated LiNi0.8Mn0.1Co0.1O2 (NMC-811) at a practical state-of-charge (50% Li content) and an over-charged state (25% Li content). A systematic study using a suite of advanced synchrotron radiation characterization tools reveals the dynamics of thermal behavior of the charged NMC-811, which involves sophisticated structural and chemical evolution; e.g. lattice phase transformation, transition metal (TM) cation migration and valence change, and lithium redistribution. These intertwined processes exhibit a complex 3D spatial heterogeneity and, collectively, form a valence state gradient throughout the particles. Our study sheds light on the response of NMC-811 to elevated temperature and highlights the importance of the cathode's thermal robustness for battery performance and safety
- …