14 research outputs found

    Targeted methylation profiling of single laser-capture microdissected post-mortem brain cells by adapted limiting dilution bisulfite pyrosequencing (LDBSP)

    Full text link
    A reoccurring issue in neuroepigenomic studies, especially in the context of neurodegenerative disease, is the use of (heterogeneous) bulk tissue, which generates noise during epigenetic profiling. A workable solution to this issue is to quantify epigenetic patterns in individually isolated neuronal cells using laser capture microdissection (LCM). For this purpose, we established a novel approach for targeted DNA methylation profiling of individual genes that relies on a combination of LCM and limiting dilution bisulfite pyrosequencing (LDBSP). Using this approach, we determined cytosine-phosphate-guanine (CpG) methylation rates of single alleles derived from 50 neurons that were isolated from unfixed post-mortem brain tissue. In the present manuscript, we describe the general workflow and, as a showcase, demonstrate how targeted methylation analysis of various genes, in this case, RHBDF2, OXT, TNXB, DNAJB13, PGLYRP1, C3, and LMX1B, can be performed simultaneously. By doing so, we describe an adapted data analysis pipeline for LDBSP, allowing one to include and correct CpG methylation rates derived from multi-allele reactions. In addition, we show that the efficiency of LDBSP on DNA derived from LCM neurons is similar to the efficiency obtained in previously published studies using this technique on other cell types. Overall, the method described here provides the user with a more accurate estimation of the DNA methylation status of each target gene in the analyzed cell pools, thereby adding further validity to this approach

    Novel method to ascertain chromatin accessibility at specific genomic loci from frozen brain homogenates and laser capture microdissected defined cells

    Get PDF
    We describe a novel method for assessing the “open” or “closed” state of chromatin at selected locations within the genome. This method combines the use of Benzonase, which can digest DNA in the presence of actin, with quantitative polymerase chain reaction to define digested regions. We demonstrate the application of this method in brain homogenates and laser captured cells. We also demonstrate application to selected sites within more than 1 gene and multiple sites within 1 gene. We demonstrate the validity of the method by treating cells with valproate, known to render chromatin more permissive, and by comparison with classical digestion with DNase I in an in vitro preparation. Although we demonstrate the use of this method in brain tissue, we also recognize its applicability to other tissue types

    Aberrant intracellular localization of H3k4me3 demonstrates an early epigenetic phenomenon in Alzheimer's disease

    No full text
    We have previously reported in Alzheimer’s disease (AD) the mislocalization of epigenetic molecules between the cell nucleus and the cytoplasm. We have extended our finding to include the aberrant localization of histone 3 trimethylation on lysine 4 (H3k4me3), an epigenetic mark associated with actively transcribing genes as well as those poised for transcription. These findings raise the question of where the ectopic localization of H3k4me3 fits within the cascade of cell biological events in the progression of AD. We, therefore, examined the expression and intracellular location of H3k4me3 as a function of Braak stage and also in relation to a series of tau markers that are indicative of disease state. Both lines of evidence showed that ectopic localization of H3k4me3 is early in the course of disease. Because of the known role of H3k4me3 in the expression of synaptic genes, our data suggest an epigenetic role in synaptic deficits early in the course of AD

    Multivariate analyses of peripheral blood leukocyte transcripts distinguish Alzheimer's, Parkinson's, control, and those at risk for developing Alzheimer's

    No full text
    The need for a reliable, simple, and inexpensive blood test for Alzheimer\u27s disease (AD) suitable for use in a primary care setting is widely recognized. This has led to a large number of publications describing blood tests for AD, which have, for the most part, not been replicable. We have chosen to examine transcripts expressed by the cellular, leukocyte compartment of blood. We have used hypothesis-based cDNA arrays and quantitative PCR to quantify the expression of selected sets of genes followed by multivariate analyses in multiple independent samples. Rather than a single study with no replicates, we chose an experimental design in which there were multiple replicates using different platforms and different sample populations. We have divided 177 blood samples and 27 brain samples into multiple replicates to demonstrate the ability to distinguish early clinical AD (Clinical Dementia Rating scale 0.5), Parkinson\u27s disease (PD), and cognitively unimpaired APOE4 homozygotes, as well as to determine persons at risk for future cognitive impairment with significant accuracy. We assess our methods in a training/test set and also show that the variables we use distinguish AD, PD, and control brain. Importantly, we describe the variability of the weights assigned to individual transcripts in multivariate analyses in repeated studies and suggest that the variability we describe may be the cause of inability to repeat many earlier studies. Our data constitute a proof of principle that multivariate analysis of the transcriptome related to cell stress and inflammation of peripheral blood leukocytes has significant potential as a minimally invasive and inexpensive diagnostic tool for diagnosis and early detection of risk for AD

    Significant, Log2 fold change(s) in genes containing ankyrin repeat domains in AD hippocampal homogenates, AD CA1 pyramidal neurons, AD CA1 astrocytes and AD CA1 microglia.

    No full text
    <p>A) Significantly <i>(p <</i> .<i>05)</i> altered Ankyrin repeat containing genes in hippocampal homogenates in AD compared to ND. B) Significantly altered (p < .05) Ankyrin repeat containing genes in LCM neurons and glial cells (C). D) average log2 mRNA fold difference in ankyrin repeat genes in PD microglia from CA1 of the hippocampus compared to the same matched control subjects used in AD comparisons. LCM neurons, astrocytes and microglia were derived from the same human subjects. Detailed expression changes can be found in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0177814#pone.0177814.s002" target="_blank">S1 Fig</a>.</p

    mRNA expression analysis of EWAS-related genes in AD CA1 pyramidal neurons AD CA1 astrocytes and AD CA1 microglia.

    No full text
    <p>Only two of the seven identified transcripts in the EWAS study were significantly differentially expressed, <i>BIN1</i> in AD neurons and <i>SERPINF2</i> in AD microglia. * indicates p < .05.</p

    <i>ANK1</i> mRNA expression levels in hippocampal homogenates, AD CA1 pyramidal neurons AD CA1 astrocytes and AD CA1 microglia.

    No full text
    <p>Bar graph depicts log2 fold change, comparing AD vs. age matched normal controls. No significant difference was detected in homogenates, AD neurons, or AD astrocytes. In stark contrast, a significant four-fold increase (<i>p<0</i>.<i>001</i>) was observed in AD microglia.</p
    corecore