90 research outputs found

    Scaled, patient-specific 3D vertebral model reconstruction based on 2D lateral fluoroscopy

    Get PDF
    Backgrounds: Accurate three-dimensional (3D) models of lumbar vertebrae are required for image-based 3D kinematics analysis. MRI or CT datasets are frequently used to derive 3D models but have the disadvantages that they are expensive, time-consuming or involving ionizing radiation (e.g., CT acquisition). An alternative method using 2D lateral fluoroscopy was developed. Materials and methods: A technique was developed to reconstruct a scaled 3D lumbar vertebral model from a single two-dimensional (2D) lateral fluoroscopic image and a statistical shape model of the lumbar vertebrae. Four cadaveric lumbar spine segments and two statistical shape models were used for testing. Reconstruction accuracy was determined by comparison of the surface models reconstructed from the single lateral fluoroscopic images to the ground truth data from 3D CT segmentation. For each case, two different surface-based registration techniques were used to recover the unknown scale factor, and the rigid transformation between the reconstructed surface model and the ground truth model before the differences between the two discrete surface models were computed. Results: Successful reconstruction of scaled surface models was achieved for all test lumbar vertebrae based on single lateral fluoroscopic images. The mean reconstruction error was between 0.7 and 1.6mm. Conclusions: A scaled, patient-specific surface model of the lumbar vertebra from a single lateral fluoroscopic image can be synthesized using the present approach. This new method for patient-specific 3D modeling has potential applications in spine kinematics analysis, surgical planning, and navigatio

    Automatic Scan Planning for Magnetic Resonance Imaging of the Knee Joint

    Get PDF
    Automatic scan planning for magnetic resonance imaging of the knee aims at defining an oriented bounding box around the knee joint from sparse scout images in order to choose the optimal field of view for the diagnostic images and limit acquisition time. We propose a fast and fully automatic method to perform this task based on the standard clinical scout imaging protocol. The method is based on sequential Chamfer matching of 2D scout feature images with a three-dimensional mean model of femur and tibia. Subsequently, the joint plane separating femur and tibia, which contains both menisci, can be automatically detected using an information-augmented active shape model on the diagnostic images. This can assist the clinicians in quickly defining slices with standardized and reproducible orientation, thus increasing diagnostic accuracy and also comparability of serial examinations. The method has been evaluated on 42 knee MR images. It has the potential to be incorporated into existing systems because it does not change the current acquisition protoco

    In-vitro validation of a device measuring the tibio-femoral contact forces and moments for efficient assistance during ligament balancing in total knee arthroplasty

    Get PDF
    Ligament balancing in total knee arthroplasty is believed to have an important influence on the joint stability and prosthesis lifetime. In order to provide quantitative information and assistance during the ligament balancing phase, a device that intraoperatively measures knee joint forces and moments has been developed

    An Integrated System for 3D Hip Joint Reconstruction from 2D X-rays: A Preliminary Validation Study

    Get PDF
    The acquisition of conventional X-ray radiographs remains the standard imaging procedure for the diagnosis of hip-related problems. However, recent studies demonstrated the benefit of using three-dimensional (3D) surface models in the clinical routine. 3D surface models of the hip joint are useful for assessing the dynamic range of motion in order to identify possible pathologies such as femoroacetabular impingement. In this paper, we present an integrated system which consists of X-ray radiograph calibration and subsequent 2D/3D hip joint reconstruction for diagnosis and planning of hip-related problems. A mobile phantom with two different sizes of fiducials was developed for X-ray radiograph calibration, which can be robustly detected within the images. On the basis of the calibrated X-ray images, a 3D reconstruction method of the acetabulum was developed and applied together with existing techniques to reconstruct a 3D surface model of the hip joint. X-ray radiographs of dry cadaveric hip bones and one cadaveric specimen with soft tissue were used to prove the robustness of the developed fiducial detection algorithm. Computed tomography scans of the cadaveric bones were used to validate the accuracy of the integrated system. The fiducial detection sensitivity was in the same range for both sizes of fiducials. While the detection sensitivity was 97.96% for the large fiducials, it was 97.62% for the small fiducials. The acetabulum and the proximal femur were reconstructed with a mean surface distance error of 1.06 and 1.01mm, respectively. The results for fiducial detection sensitivity and 3D surface reconstruction demonstrated the capability of the integrated system for 3D hip joint reconstruction from 2D calibrated X-ray radiograph

    Statistical model-based segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs

    Get PDF
    Purpose: Segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs is required to create a three-dimensional model of the hip joint for use in planning and treatment. However, manually extracting the femoral contour is tedious and prone to subjective bias, while automatic segmentation must accommodate poor image quality, anatomical structure overlap, and femur deformity. A new method was developed for femur segmentation in AP pelvic radiographs. Methods: Using manual annotations on 100 AP pelvic radiographs, a statistical shape model (SSM) and a statistical appearance model (SAM) of the femur contour were constructed. The SSM and SAM were used to segment new AP pelvic radiographs with a three-stage approach. At initialization, the mean SSM model is coarsely registered to the femur in the AP radiograph through a scaled rigid registration. Mahalanobis distance defined on the SAM is employed as the search criteria for each annotated suggested landmark location. Dynamic programming was used to eliminate ambiguities. After all landmarks are assigned, a regularized non-rigid registration method deforms the current mean shape of SSM to produce a new segmentation of proximal femur. The second and third stages are iteratively executed to convergence. Results: A set of 100 clinical AP pelvic radiographs (not used for training) were evaluated. The mean segmentation error was 0.96mm±0.35mm0.96\,\hbox {mm} \pm 0.35\,\hbox {mm} 0.96 mm ± 0.35 mm , requiring < ⁣5<\!5 < 5 s per case when implemented with Matlab. The influence of the initialization on segmentation results was tested by six clinicians, demonstrating no significance difference. Conclusions: A fast, robust and accurate method for femur segmentation in digital AP pelvic radiographs was developed by combining SSM and SAM with dynamic programming. This method can be extended to segmentation of other bony structures such as the pelvis

    Statistical model-based segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs

    Get PDF
    Purpose: Segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs is required to create a three-dimensional model of the hip joint for use in planning and treatment. However, manually extracting the femoral contour is tedious and prone to subjective bias, while automatic segmentation must accommodate poor image quality, anatomical structure overlap, and femur deformity. A new method was developed for femur segmentation in AP pelvic radiographs. Methods: Using manual annotations on 100 AP pelvic radiographs, a statistical shape model (SSM) and a statistical appearance model (SAM) of the femur contour were constructed. The SSM and SAM were used to segment new AP pelvic radiographs with a three-stage approach. At initialization, the mean SSM model is coarsely registered to the femur in the AP radiograph through a scaled rigid registration. Mahalanobis distance defined on the SAM is employed as the search criteria for each annotated suggested landmark location. Dynamic programming was used to eliminate ambiguities. After all landmarks are assigned, a regularized non-rigid registration method deforms the current mean shape of SSM to produce a new segmentation of proximal femur. The second and third stages are iteratively executed to convergence. Results: A set of 100 clinical AP pelvic radiographs (not used for training) were evaluated. The mean segmentation error was 0.96mm±0.35mm0.96\,\hbox {mm} \pm 0.35\,\hbox {mm} 0.96 mm ± 0.35 mm , requiring < ⁣5<\!5 < 5 s per case when implemented with Matlab. The influence of the initialization on segmentation results was tested by six clinicians, demonstrating no significance difference. Conclusions: A fast, robust and accurate method for femur segmentation in digital AP pelvic radiographs was developed by combining SSM and SAM with dynamic programming. This method can be extended to segmentation of other bony structures such as the pelvis

    In-vitro evaluation of a force-sensing device for ligament balancing in TKA

    Get PDF
    Component loosening and instability are common causes of dysfunction after Total Knee Arthroplasty (TKA) and it is generally assumed that such complications are due to tibio-femoral misalignment or ligamentous imbalance. During the surgery, the ligamentous force balance is currently qualitatively assessed by the surgeon through manual trial movements of the limb. In order to improve this procedure, we developed a force-sensing device to intraoperatively measure knee joint forces and moments. The aim of this device is twofold: a) using tibio-femoral forces and moments make quantifiable measurements of what surgeons describe as a balanced knee joint b) help surgeons during TKA to reach this balance state
    corecore