481 research outputs found
Influence of temperature fluctuations on plasma turbulence investigations with Langmuir probes
The reliability of Langmuir probe measurements for plasma-turbulence
investigations is studied on GEMR gyro-fluid simulations and compared with
results from conditionally sampled I-V characteristics as well as self-emitting
probe measurements in the near scrape-off layer of the tokamak ASDEX Upgrade.
In this region, simulation and experiment consistently show coherent in-phase
fluctuations in density, plasma potential and also in electron temperature.
Ion-saturation current measurements turn out to reproduce density fluctuations
quite well. Fluctuations in the floating potential, however, are strongly
influenced by temperature fluctuations and, hence, are strongly distorted
compared to the actual plasma potential. These results suggest that
interpreting floating as plasma-potential fluctuations while disregarding
temperature effects is not justified near the separatrix of hot fusion plasmas.
Here, floating potential measurements lead to corrupted results on the ExB
dynamics of turbulent structures in the context of, e.g., turbulent particle
and momentum transport or instability identification on the basis of
density-potential phase relations
Fluid structure in the immediate vicinity of an equilibrium three-phase contact line and assessment of disjoining pressure models using density functional theory
We examine the nanoscale behavior of an equilibrium three-phase contact line
in the presence of long-ranged intermolecular forces by employing a statistical
mechanics of fluids approach, namely density functional theory (DFT) together
with fundamental measure theory (FMT). This enables us to evaluate the
predictive quality of effective Hamiltonian models in the vicinity of the
contact line. In particular, we compare the results for mean field effective
Hamiltonians with disjoining pressures defined through (I) the adsorption
isotherm for a planar liquid film, and (II) the normal force balance at the
contact line. We find that the height profile obtained using (I) shows good
agreement with the adsorption film thickness of the DFT-FMT equilibrium density
profile in terms of maximal curvature and the behavior at large film heights.
In contrast, we observe that while the height profile obtained by using (II)
satisfies basic sum rules, it shows little agreement with the adsorption film
thickness of the DFT results. The results are verified for contact angles of
20, 40 and 60 degrees
Observation of exponential spectra and Lorentzian pulses in the TJ-K stellarator
An experimental investigation of the low-frequency density fluctuations in the plasma edge region of the TJ-K stellarator [N. Krause et al., Rev. Sci. Inst. 73, 3474 (2002)] finds that the ensemble- averaged frequency spectra exhibit a near exponential frequency dependence whose origin can be traced to individual pulses having a Lorentzian temporal shape. Similar features have been previously observed [D. C. Pace et al., Phys. Plasmas 15, 122304 (2008)] in a linear magnetized device under conditions in which cross-field pressure gradients are present. The reported observation of such features within the turbulent environment of a toroidal confinement device provides support for the conjecture that the underlying processes are a general feature of pressure gradients. Also presented is the magnetic field strength dependence of the pulse widths and the waiting time distribution between pulses
- …