180 research outputs found

    Downflow Hanging Sponge System: A Self-Sustaining Option for Wastewater Treatment

    Get PDF
    Need of self-sustaining wastewater treatment plants (WWTPs) has become critical to cope up with dynamics of the environmental regulations and rapid advancements in the contemporary technologies. At present there are limited number of self-sustaining WWTPs around the world. The aim of this chapter is to present state -of- art of Downflow Hanging Sponge (DHS) system which was developed as a post treatment unit of Upflow Anaerobic Sludge Blanket (UASB) from sustainability perspective. DHS system is a non-submerged fixed bed trickling filter (TF) that employs a core technology of polyurethane sponges as a media where the microorganisms thrive and major treatment processes take place. This chapter reviews the introduction of DHS system (UASB+DHS) summarizes the quantitative analysis of environmental, economic and social sustainability using indicators. Furthermore, self-sustaining prospects of DHS system are assessed and discussed by comparing with conventional TF (UASB+TF)

    Photon Pair Generation in Silicon Micro-Ring Resonator with Reverse Bias Enhancement

    Get PDF
    Photon sources are fundamental components for any quantum photonic technology. The ability to generate high count-rate and low-noise correlated photon pairs via spontaneous parametric down-conversion using bulk crystals has been the cornerstone of modern quantum optics. However, future practical quantum technologies will require a scalable integration approach, and waveguide-based photon sources with high-count rate and low-noise characteristics will be an essential part of chip-based quantum technologies. Here, we demonstrate photon pair generation through spontaneous four-wave mixing in a silicon micro-ring resonator, reporting a maximum coincidence-to-accidental (CAR) ratio of 602 (+-) 37, and a maximum photon pair generation rate of 123 MHz (+-) 11 KHz. To overcome free-carrier related performance degradations we have investigated reverse biased p-i-n structures, demonstrating an improvement in the pair generation rate by a factor of up to 2, with negligible impact on CAR.Comment: 5 pages, 3 figure

    Five-point Likert scaling on MRI predicts clinically significant prostate carcinoma

    Get PDF
    Background: To clarify the relationship between the probability of prostate cancer scaled using a 5-point Likert system and the biological characteristics of corresponding tumor foci. Methods: The present study involved 44 patients undergoing 3.0-Tesla multiparametric MRI before laparoscopic radical prostatectomy. Tracing based on pathological and MRI findings was performed. The relationship between the probability of cancer scaled using the 5-point Likert system and the biological characteristics of corresponding tumor foci was evaluated. Results: A total of 102 tumor foci were identified histologically from the 44 specimens. Of the 102 tumors, 55 were assigned a score based on MRI findings (score 1: n = 3; score 2: n = 3; score 3: n = 16; score 4: n = 11 score 5: n = 22), while 47 were not pointed out on MRI. The tracing study revealed that the proportion of >0.5 cm3 tumors increased according to the upgrade of Likert scores (score 1 or 2: 33 %; score 3: 68.8 %; score 4 or 5: 90.9 %, χ2 test, p 7 also increased from scale 2 to scale 5 (scale 2: 0 %; scale 3: 56.3 %; scale 4: 72.7 %; 5: 90.9 %, χ2 test, p = 0.0001). On using score 3 or higher as the threshold of cancer detection on MRI, the detection rate markedly improved if the tumor volume exceeded 0.5 cm3 (<0.2 cm3: 10.3 %; 0.2-0.5 cm3: 25 %; 0.5-1.0 cm3: 66.7 %; 1.0 < cm3: 92.1 %). Conclusions: Each Likert scale favobably reflected the corresponding tumor’s volume and Gleason score. Our observations show that “score 3 or higher” could be a useful threshold to predict clinically significant carcinoma when considering treatment options

    Nuclear abnormalities in aspirated thyroid cells and chromosome aberrations in lymphocytes of residents near the Semipalatinsk Nuclear Test Site

    Get PDF
    Chromosomal studies in peripheral lymphocytes from 63 residents near the Semipalatinsk nuclear test site, at ages of 52–63 years old, were performed in 2001–2002. A higher rate of chromosome aberrations was observed in the two contaminated villages, Dolon and Sarjal, compared with the control village, Kokpekti. Moreover, a relationship of frequency of cells with radiation induced chromosome aberrations and the previously estimated exposure dose was observed. Furthermore, apparent nuclear abnormalities (ANA) of thyroid follicular cells were studied in 30 out of 63 residents, who were examined for chromosome aberrations. A higher rate of ANA was also found in the residents in the exposed villages compared with those in the control village. These results suggest radiation effects both on the chromosomes in peripheral lymphocytes and on the follicular cells in the thyroid

    Nuclear abnormalities in aspirated thyroid cells and chromosome aberrations in lymphocytes of residents near the Semipalatinsk Nuclear Test Site

    Get PDF
    Chromosomal studies in peripheral lymphocytes from 63 residents near the Semipalatinsk nuclear test site, at ages of 52–63 years old, were performed in 2001–2002. A higher rate of chromosome aberrations was observed in the two contaminated villages, Dolon and Sarjal, compared with the control village, Kokpekti. Moreover, a relationship of frequency of cells with radiation induced chromosome aberrations and the previously estimated exposure dose was observed. Furthermore, apparent nuclear abnormalities (ANA) of thyroid follicular cells were studied in 30 out of 63 residents, who were examined for chromosome aberrations. A higher rate of ANA was also found in the residents in the exposed villages compared with those in the control village. These results suggest radiation effects both on the chromosomes in peripheral lymphocytes and on the follicular cells in the thyroid
    corecore