149 research outputs found

    Difference in the distribution pattern of substrate enzymes in the metabolic network of Escherichia coli, according to chaperonin requirement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chaperonins are important in living systems because they play a role in the folding of proteins. Earlier comprehensive analyses identified substrate proteins for which folding requires the chaperonin GroEL/GroES (GroE) in <it>Escherichia coli</it>, and they revealed that many chaperonin substrates are metabolic enzymes. This result implies the importance of chaperonins in metabolism. However, the relationship between chaperonins and metabolism is still unclear.</p> <p>Results</p> <p>We investigated the distribution of chaperonin substrate enzymes in the metabolic network using network analysis techniques as a first step towards revealing this relationship, and found that as chaperonin requirement increases, substrate enzymes are more laterally distributed in the metabolic. In addition, comparative genome analysis showed that the chaperonin-dependent substrates were less conserved, suggesting that these substrates were acquired later on in evolutionary history.</p> <p>Conclusions</p> <p>This result implies the expansion of metabolic networks due to this chaperonin, and it supports the existing hypothesis of acceleration of evolution by chaperonins. The distribution of chaperonin substrate enzymes in the metabolic network is inexplicable because it does not seem to be associated with individual protein features such as protein abundance, which has been observed characteristically in chaperonin substrates in previous works. However, it becomes clear by considering this expansion process due to chaperonin. This finding provides new insights into metabolic evolution and the roles of chaperonins in living systems.</p

    Mechanistic dissection of premature translation termination induced by acidic residues-enriched nascent peptide

    Get PDF
    Ribosomes polymerize nascent peptides through repeated inter-subunit rearrangements between the classic and hybrid states. The peptidyl-tRNA, the intermediate species during translation elongation, stabi-lizes the translating ribosome to ensure robust continuity of elongation. However, the translation of acidic residue-rich sequences destabilizes the ribosome, leading to a stochastic premature translation cessation termed intrinsic ribosome destabilization (IRD), which is still ill-defined. Here, we dissect the molecular mechanisms underlying IRD in Escherichia coli. Reconstitution of the IRD event reveals that (1) the prolonged ribosome stalling enhances IRD-mediated translation discontinuation, (2) IRD depends on temperature, (3) the destabilized 70S ribosome complex is not necessarily split, and (4) the destabilized ribosome is subjected to peptidyl-tRNA hydrolase-mediated hydrolysis of the peptidyl-tRNA without subunit splitting or recycling factors-mediated subunit splitting. Collectively, our data indicate that the translation of acidic-rich sequences alters the conformation of the 70S ribosome to an aberrant state that allows the noncanonical pre-mature termination

    Molecularly Engineered “Janus GroEL”: Application to Supramolecular Copolymerization with a Higher Level of Sequence Control

    Get PDF
    Herein we report the synthesis and isolation of a shape-persistent Janus protein nanoparticle derived from the biomolecular machine chaperonin GroEL (^AGroEL^B) and its application to DNA-mediated ternary supramolecular copolymerization. To synthesize ^AGroEL^B with two different DNA strands A and B at its opposite apical domains, we utilized the unique biological property of GroEL, i.e., Mg²⁺/ATP-mediated ring exchange between ^AGroEL^A and ^BGroEL^B with their hollow cylindrical double-decker architectures. This exchange event was reported more than 24 years ago but has never been utilized for molecular engineering of GroEL. We leveraged DNA nanotechnology to purely isolate Janus ^AGroEL^B and succeeded in its precision ternary supramolecular copolymerization with two DNA comonomers, A** and B*, that are partially complementary to A and B in ^AGroEL^B, respectively, and programmed to self-dimerize on the other side. Transmission electron microscopy allowed us to confirm the formation of the expected dual-periodic copolymer sequence −(^(B*/B)GroEL^(A/A**/A**/A)GroEL^(B/B*))– in the form of a laterally connected lamellar assembly rather than a single-chain copolymer

    Material properties of a low contraction and resistivity silicon-aluminum composite for cryogenic detectors

    Full text link
    We report on the cryogenic properties of a low-contraction silicon-aluminum composite, namely Japan Fine Ceramics SA001, to use as a packaging structure for cryogenic silicon devices. SA001 is a silicon--aluminum composite material (75% silicon by volume) and has a low thermal expansion coefficient (\sim1/3 that of aluminum). The superconducting transition temperature of SA001 is measured to be 1.18 K, which is in agreement with that of pure aluminum, and is thus available as a superconducting magnetic shield material. The residual resistivity of SA001 is 0.065 μΩm\mathrm{\mu \Omega m}, which is considerably lower than an equivalent silicon--aluminum composite material. The measured thermal contraction of SA001 immersed in liquid nitrogen is L293KL77KL293K=0.12\frac{L_{293\mathrm{K}}-L_{77\mathrm{K}}}{L_{293\mathrm{K}}}=0.12%, which is consistent with the expected rate obtained from the volume-weighted mean of the contractions of silicon and aluminum. The machinability of SA001 is also confirmed with a demonstrated fabrication of a conical feedhorn array, with a wall thickness of 100 μm\mathrm{\mu m}. These properties are suitable for packaging applications for large-format superconducting detector devices.Comment: 8 pages, 4 figures, 1 table, accepted for the Journal of Low Temperature Physics for the LTD19 special issu

    Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system

    Get PDF
    Membrane proteins play pivotal roles in cellular processes and are key targets for drug discovery. However, the reliable synthesis and folding of membrane proteins are significant problems that need to be addressed owing to their extremely high hydrophobic properties, which promote irreversible aggregation in hydrophilic conditions. Previous reports have suggested that protein aggregation could be prevented by including exogenous liposomes in cell-free translation processes. Systematic studies that identify which membrane proteins can be rescued from irreversible aggregation during translation by liposomes would be valuable in terms of understanding the effects of liposomes and developing applications for membrane protein engineering in the context of pharmaceutical science and nanodevice development. Therefore, we performed a comprehensive study to evaluate the effects of liposomes on 85 aggregation-prone membrane proteins from Escherichia coli by using a reconstituted, chemically defined cell-free translation system. Statistical analyses revealed that the presence of liposomes increased the solubility of >90% of the studied membrane proteins, and ultimately improved the yields of the synthesized proteins. Bioinformatics analyses revealed significant correlations between the liposome effect and the physicochemical properties of the membrane proteins

    Wetting Induced Oxidation of Pt-based Nano Catalysts Revealed by In Situ High Energy Resolution X-ray Absorption Spectroscopy

    Get PDF
    In situ high energy resolution fluorescence detection X-ray absorption spectroscopy (HERFD-XAS) was used to systematically evaluate interactions of H2O and O2 adsorbed on Pt and Pt3Co nanoparticle catalysts in different particle sizes. The systematic increase in oxidation due to adsorption of different species (H2O adsorption <O2 adsorption <O2 + H2O coadsorption) suggests that cooperative behavior between O2 and H2O adsorptions is responsible for the overpotential induced by hydrated species in fuel cells. From the alloying and particle size effects, it is found that both strength of O2/H2O adsorption and their cooperative effect upon coadsorption are responsible for the specific activity of Pt catalysts

    C9orf72-derived arginine-rich poly-dipeptides impede phase modifiers

    Get PDF
    Nuclear import receptors (NIRs) not only transport RNA-binding proteins (RBPs) but also modify phase transitions of RBPs by recognizing nuclear localization signals (NLSs). Toxic arginine-rich poly-dipeptides from C9orf72 interact with NIRs and cause nucleocytoplasmic transport deficit. However, the molecular basis for the toxicity of arginine-rich poly-dipeptides toward NIRs function as phase modifiers of RBPs remains unidentified. Here we show that arginine-rich poly-dipeptides impede the ability of NIRs to modify phase transitions of RBPs. Isothermal titration calorimetry and size-exclusion chromatography revealed that proline:arginine (PR) poly-dipeptides tightly bind karyopherin-β2 (Kapβ2) at 1:1 ratio. The nuclear magnetic resonances of Kapβ2 perturbed by PR poly-dipeptides partially overlapped with those perturbed by the designed NLS peptide, suggesting that PR poly-dipeptides target the NLS binding site of Kapβ2. The findings offer mechanistic insights into how phase transitions of RBPs are disabled in C9orf72-related neurodegeneration

    Transcriptional Control of Steroid Biosynthesis Genes in the Drosophila Prothoracic Gland by Ventral Veins Lacking and Knirps.

    Get PDF
    Specialized endocrine cells produce and release steroid hormones that govern development, metabolism and reproduction. In order to synthesize steroids, all the genes in the biosynthetic pathway must be coordinately turned on in steroidogenic cells. In Drosophila, the steroid producing endocrine cells are located in the prothoracic gland (PG) that releases the steroid hormone ecdysone. The transcriptional regulatory network that specifies the unique PG specific expression pattern of the ecdysone biosynthetic genes remains unknown. Here, we show that two transcription factors, the POU-domain Ventral veins lacking (Vvl) and the nuclear receptor Knirps (Kni), have essential roles in the PG during larval development. Vvl is highly expressed in the PG during embryogenesis and is enriched in the gland during larval development, suggesting that Vvl might function as a master transcriptional regulator in this tissue. Vvl and Kni bind to PG specific cis-regulatory elements that are required for expression of the ecdysone biosynthetic genes. Knock down of either vvl or kni in the PG results in a larval developmental arrest due to failure in ecdysone production. Furthermore, Vvl and Kni are also required for maintenance of TOR/S6K and prothoracicotropic hormone (PTTH) signaling in the PG, two major pathways that control ecdysone biosynthesis and PG cell growth. We also show that the transcriptional regulator, Molting defective (Mld), controls early biosynthetic pathway steps. Our data show that Vvl and Kni directly regulate ecdysone biosynthesis by transcriptional control of biosynthetic gene expression and indirectly by affecting PTTH and TOR/S6K signaling. This provides new insight into the regulatory network of transcription factors involved in the coordinated regulation of steroidogenic cell specific transcription, and identifies a new function of Vvl and Knirps in endocrine cells during post-embryonic development

    ECAT11/L1td1 Is Enriched in ESCs and Rapidly Activated During iPSCGeneration, but It Is Dispensable for the Maintenance and Induction of Pluripotency

    Get PDF
    The principal factors that lead to proliferation and pluripotency in embryonic stem cells (ESCs) have been vigorously investigated. However, the global network of factors and their full signaling cascade is still unclear. In this study, we found that ECAT11 (L1td1) is one of the ESC-associated transcripts harboring a truncated fragment of ORF-1, a component of theL1 retrotransposable element. We generated an ECAT11 knock-in mouse by replacing its coding region with green fluorescent protein. In the early stage of development, the fluorescence was observed at the inner cell mass of blastocysts and epiblasts. Despite this specific expression, ECAT11-null mice grow normally and are fertile. In addition, ECAT11 was dispensable for both the proliferation and pluripotency of ESCs.We found rapid and robust activation of ECAT11 in fibroblasts after the forced expression of transcription factors that can give rise pluripotency in somatic cells.However, iPS cells could be established from ECAT11-null fibroblasts. Our data demonstrate thedispensability of ECAT11/L1td1 in pluripotency, despite its specific expression
    corecore