571 research outputs found

    Relaxor ferroelectricity induced by electron correlations in a molecular dimer Mott insulator

    Full text link
    We have investigated the dielectric response in an antiferromagnetic dimer-Mott insulator beta'-(BEDT-TTF)2ICl2 with square lattice, compared to a spin liquid candidate kappa-(BEDT-TTF)2Cu2(CN)3. Temperature dependence of the dielectric constant shows a peak structure obeying Curie-Weiss law with strong frequency dependence. We found an anisotropic ferroelectricity by pyrocurrent measurements, which suggests the charge disproportionation in a dimer. The ferroelectric actual charge freezing temperature is related to the antiferromagnetic interaction, which is expected to the charge-spin coupled degrees of freedom in the system.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    Thermal Conductivity near H_c2 for spin-triplet superconducting States with line nodes in Sr_2RuO_4

    Full text link
    We calculate the thermal conductivity kappa in magnetic fields near H_c2 for spin-triplet superconducting states with line nodes vertical and horizontal relative to the RuO_2-planes. The method for calculating the Green's functions takes into account the spatial variation of the order parameter and superconducting flow for the Abrikosov vortex lattice. For in-plane magnetic field we obtain variations of the in-plane kappa with two-fold symmetry as a function of rotation angle where the minima and maxima occur for field directions parallel and perpendicular to the heat flow. The amplitude of the variation decreases with increasing impurity scattering and temperature. At higher temperatures the minima and maxima of the variation are interchanged. Since the results for vertical and horizontal line nodes are almost the same we cannot say which of the two pairing models is more compatible with recent measurements of kappa in Sr_2RuO_4. The observed four-fold modulation of kappa in YBa_2Cu_3O_(7-\delta) is obtained for d-wave pairing by taking into account the particular shape of the Fermi surface and the finite temperature effect. The results for kappa for the f-wave pairing state with horizontal line nodes disagree in some respects with the measurements on UPt_3.Comment: 8 pages, 6 figures. To be published in Phys. Rev.

    Two-band superconductivity featuring different anisotropies in the ternary iron silicide Lu2_{2}Fe3_{3}Si5_{5}

    Full text link
    We report detailed studies of the upper critical field and low-temperature specific heat in the two-gap superconductor Lu2_{2}Fe3_{3}Si5_{5}. The anisotropy of the upper critical field suggests that the active band is quasi-one-dimensional. Low-temperature specific heat in magnetic fields reveals that the virtual Hc2H_{c2} in the passive band is almost isotropic. These results strongly indicate that the two bands have two different anisotropies, similar to the typical two-gap superconductor MgB2_{2}, and their interplay may be essential to the two-gap superconductivity in Lu2_{2}Fe3_{3}Si5_{5}.Comment: 5 pages, 5 figure

    Double Giant Dipole Resonance in ^{208}Pb

    Get PDF
    Double-dipole excitations in ^{208}Pb are analyzed within a microscopic model explicitly treating 2p2h-excitations. Collective states built from such 2p2h-excitations are shown to appear at about twice the energy of the isovector giant dipole resonance, in agreement with the experimental findings. The calculated cross section for Coulomb excitation at relativistic energies cannot explain simultaneously the measured single-dipole and double-dipole cross sections, however.Comment: 7 pages, Latex, 5 postscript figure

    Dynamics vs electronic states of vortex core of high-T_c superconductors investigated by high-frequency impedance measurement

    Full text link
    Dynamics of vortices reflects the electronic states of quasiparticles in the core. To understand this, we investigated the following three issues. (1) We investigated the complex surface impedance, Zs, of YBa2Cu3Oy as a function of magnetic field, H. The total features were well expressed by the Coffey-Clem model. From the data, we estimated the viscosity and pinning frequency, which were found to be independent of frequency. In particular, the obtained viscosity definitely shows that the core of vortex of YBa2Cu3Oy is moderately clean. This result suggests that new physics will show up, for the physics of quantum moderately clean vortex core is unknown at all. (2) An anomaly found in the surface reactance at the first order transition (FOT) of vortex lattice was investigated in Bi2Sr2CaCu2Oy with various doping levels. As a result, the anomaly was found only in the samples exhibiting the FOT. On the other hand, we did not observe the anomaly in YBa2Cu3Oy. These suggest that the anomaly is due to the change in the electronic states of the vortices characteristic of materials with very strong anisotropy. (3) We measured H dependence of both the thermal conductivity \kappa(H) and Zs(H) in exactly the same pieces of crystal. We could not find any anomaly in Zs(H) even at the onset of the plateau. This result suggests that the origin of the plateau in \kappa(H) is not a drastic phase transition but is rather gradual crossover.Comment: 6 pages, 5 figures, Proceedings of Plasma2000(Sendai), to be published in Physica

    Mechanism of spin-triplet superconductivity in Sr2RuO4

    Full text link
    The unique Fermi surfaces and their nesting properties of Sr2RuO4 are considered. The existence of unconventional superconductivity is shown microscopically, for the first time, from the magnetic interactions (due to nesting) and the phonon-mediated interactions. The odd-parity superconductivity is favored in the α\alpha and β\beta sheets of the Fermi surface, and the various superconductivities are possible in the γ\gamma sheet. There are a number of possible odd-parity gaps, which include the gaps with nodes, the breaking of time-reversal symmetry and d⃗∥z^\vec{d}\parallel \hat{z}.Comment: 4 pages, 3 figure

    Thermo-magnetic hysteretic properties resembling superconductivity in the normal state of La1.85Sr0.15CuO4

    Get PDF
    We have performed detailed magnetic and thermal hysteresis experiments in the normal-state magnetization of La1.85Sr0.15CuO4 single crystal. Using a combination of in-field and in-zero-magnetic-field measurements at different stages of thermal history of the sample, we identified subtle effects associated with the presence of magnetic signatures which resemble those below the superconducting transition temperature (Tc=36 K) but survive up to 250 K.Comment: One file including text and figure

    Bulk and surface low-energy excitations in YBa2Cu3O7-d studied by high-resolution angle-resolved photoemission spectroscopy

    Full text link
    We have performed high-resolution angle-resolved photoemission spectroscopy on YBa2Cu3O7-delta (Y123; delta = 0.06; Tc = 92 K). By accurately determining the Fermi surface and energy band dispersion, we solve long-standing controversial issues as to the anomalous electronic states of Y-based high-Tc cuprates. We unambiguously identified surface-bilayer-derived bonding and antibonding bands, together with their bulk counterparts. The surface bands are highly overdoped (hole concentration x = 0.29), showing no evidence for the gap opening or the dispersion anomaly in the antinodal region, while the bulk bands show a clear dx2-y2-wave superconducting gap and the Bogoliubov quasiparticle-like behavior with a characteristic energy scale of 50-60 meV indicative of a strong electron-boson coupling in the superconducting state. All these results suggest that the metallic and superconducting states coexist at the adjacent bilayer of Y123 surface.Comment: Accepted for publication in Phys. Rev.

    Variational Calculation for the Equation of State of Nuclear Matter at Finite Temperatures

    Get PDF
    An equation of state (EOS) for uniform nuclear matter is constructed at zero and finite temperatures with the variational method starting from the realistic nuclear Hamiltonian composed of the Argonne V18 and UIX potentials. The energy is evaluated in the two-body cluster approximation with the three-body-force contribution treated phenomenologically so as to reproduce the empirical saturation conditions. The obtained energies for symmetric nuclear matter and neutron matter at zero temperature are in fair agreement with those by Akmal, Pandharipande and Ravenhall, and the maximum mass of the neutron star is 2.2 Msolar. At finite temperatures, a variational method by Schmidt and Pandharipande is employed to evaluate the free energy, which is used to derive various thermodynamic quantities of nuclear matter necessary for supernova simulations. The result of this variational method at finite temperatures is found to be self-consistent.Comment: Revised Versio
    • …
    corecore