154 research outputs found

    Expression and localization of connective tissue growth factor (CTGF/Hcs24/CCN2) in osteoarthritic cartilage

    Get PDF
    AbstractObjectiveThe investigation of the expression and localization of connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24/CCN family member 2 (CTGF/Hcs24/CCN2) in normal and osteoarthritic (OA) cartilage, and quantification of CTGF/Hcs24-positive cells.MethodsCartilage samples of patients (n=20) with late stage OA were obtained at total joint replacement surgery. Morphologically normal cartilage was harvested for comparison purposes from the femoral heads of 6 other patients with femoral neck fracture. Paraffin-embedded sections were stained by Safranin O. The severity of the OA lesions was divided into four stages (normal, early, moderate, and severe). The localization of protein and mRNA for CTGF/Hcs24 was investigated by immunohistochemistry and in situ hybridization, respectively. The population of CTGF/Hcs24-positive chondrocytes in OA cartilage and chondro-osteophyte was quantified by counting the number of the cells under light microscopy.ResultsSignals for CTGF/Hcs24 were detected in a small percentage of chondrocytes throughout the layers of normal cartilage. In early stage OA cartilage, the CTGF/Hcs24-positive chondrocytes were localized mainly in the superficial layer. In moderate to severe OA cartilage, intense staining for CTGF/Hcs24 was observed in proliferating chondrocytes forming cell clusters next to the cartilage surface. In chondro-osteophyte, strong signals were found in the chondrocytes of the proliferative and hypertrophic zones.ConclusionCTGF/Hcs24 expression was detected in both normal and OA chondrocytes of human samples. The results of the current study suggested that expression of CTGF/Hcs24 was concomitant with development of OA lesions and chondrocyte differentiation in chondro-osteophyte

    A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method

    Get PDF
    A particle method for reproducing the phase space of collisionless stellar systems is described. The key idea originates in Liouville's theorem which states that the distribution function (DF) at time t can be derived from tracing necessary orbits back to t=0. To make this procedure feasible, a self-consistent field (SCF) method for solving Poisson's equation is adopted to compute the orbits of arbitrary stars. As an example, for the violent relaxation of a uniform-density sphere, the phase-space evolution which the current method generates is compared to that obtained with a phase-space method for integrating the collisionless Boltzmann equation, on the assumption of spherical symmetry. Then, excellent agreement is found between the two methods if an optimal basis set for the SCF technique is chosen. Since this reproduction method requires only the functional form of initial DFs but needs no assumptions about symmetry of the system, the success in reproducing the phase-space evolution implies that there would be no need of directly solving the collisionless Boltzmann equation in order to access phase space even for systems without any special symmetries. The effects of basis sets used in SCF simulations on the reproduced phase space are also discussed.Comment: 16 pages w/4 embedded PS figures. Uses aaspp4.sty (AASLaTeX v4.0). To be published in ApJ, Oct. 1, 1997. This preprint is also available at http://www.sue.shiga-u.ac.jp/WWW/prof/hozumi/papers.htm

    Local Resection by Combined Laparoendoscopic Surgery for Duodenal Gastrointestinal Stromal Tumor

    Get PDF
    Combined laparoendoscopic surgery is a novel surgical method which consists of both endoscopic surgery from inside the gastrointestinal tract and laparoscopic surgery from the outside. We report a case of duodenal GIST, in which combined laparoendoscopic local resection was attempted. The lesion was resected endoscopically using endoscopic submucosal dissection technique under laparoscopic assistance. Laparoscope was used for originating the orientation of the tumor, intra-operative EUS, and monitoring serosal injury from the peritoneal cavity. Postoperative hemorrhage occurred; however, precise orientation of the lesion helped us to manage the patient with minimal invasive reoperation. And thus, the bowel integrity was completely preserved, by avoiding segmental duodenal resection and pancreaticoduodenectomy. This novel, less invasive surgical procedure may become an attractive option for the lesions originating in the anatomically challenging portion of the GI tract for endoscopic or laparoscopic surgery alone

    Geranylgeranylacetone Ameliorates Inflammatory Response to Lipopolysaccharide (LPS) in Murine Macrophages: Inhibition of LPS Binding to The Cell Surface

    Get PDF
    We investigated whether pretreatment with geranylgeranylacetone (GGA), a potent heat shock protein (HSP) inducer, could inhibit proinflammatory cytokine liberation and nitric oxide (NO) production in lipopolysaccharide (LPS)-treated murine macrophages. The levels of NO and tumor necrosis factor-α (TNF-α) released from murine macrophage RAW 264 cells were increased dose- and time-dependently following treatment with LPS (1 µg/ml). GGA (80 µM) treatment 2 h before LPS addition significantly suppressed TNF-α and NO productions at 12 h and 24 h after LPS, respectively, indicating that GGA inhibits activation of macrophages. However, replacement by fresh culture medium before LPS treatment abolished the inhibitory effect of GGA on NO production in LPS-treated cells. Furthermore, GGA inhibited both HSP70 and inducible NO synthase expressions induced by LPS treatment despite an HSP inducer. When it was examined whether GGA interacts with LPS and/or affects expression of Toll-like receptor 4 (TLR4) and CD14 on the cell surface, GGA inhibited the binding of LPS to the cell surface, while GGA did not affect TLR4 and CD14 expressions. These results indicate that GGA suppresses the binding of LPS to the cell surface of macrophages, resulting in inhibiting signal transduction downstream of TLR4

    Annual report by The Japanese Association for Thoracic Surgery

    Get PDF
    All data regarding cardiovascular surgery and thoracic surgery were obtained from NCD, whereas data regarding esophageal surgery were collected from survey questionnaire by The Japanese Association for Thoracic Surgery forms because NCD of esophageal surgery does not include non-surgical cases (i.e., patients with adjuvant chemotherapy or radiation alone). Based on the change in data aggregation, there are several differences between this 2015 annual report and previous annual reports: the number of institutions decreased in each category from 578 (2014) to 568 (2015) in cardiovascular, from 762 to 714 in general thoracic and from 626 to 571 in esophageal surgery. Because more than two departments in the same institute registered their data to NCD individually, we cannot calculate correct number of institutes in this survey. Then, the response rate is not indicated in the category of cardiovascular surgery (Table 1), and the number of institutions classified by the operation number is also not calculated in the category of cardiovascular surgery (Table 2)

    Bispectral index-guided propofol sedation during endoscopic ultrasonography

    Get PDF
    Background/Aims Bispectral index (BIS) monitors process and display electroencephalographic data are used to assess the depth of anesthesia. This study retrospectively evaluated the usefulness of BIS monitoring during endoscopic ultrasonography (EUS). Methods This study included 725 consecutive patients who underwent EUS under sedation with propofol. BIS monitoring was used in 364 patients and was not used in 361. The following parameters were evaluated: (1) median dose of propofol; (2) respiratory and circulatory depression; (3) occurrence of body movements; (4) awakening score >8 at the time; and (5) awakening score 2 hours after leaving the endoscopy room. Results The BIS group received a significantly lower median dose of propofol than the non-BIS group (159.2 mg vs. 167.5 mg; p=0.015) in all age groups. For patients aged ≥75 years, the reduction in heart rate was significantly lower in the BIS group than in the non-BIS group (1.2% vs. 9.1%; p=0.023). Moreover, the occurrence of body movements was markedly lower in the BIS group than in the non-BIS group (8.5% vs. 39.4%; p<0.001). Conclusions During EUS examination, BIS monitoring is useful for maintaining a constant depth of anesthesia, especially in patients 75 years of age or older
    corecore