131 research outputs found

    Learning intrinsic excitability in medium spiny neurons

    Full text link
    We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parametrization of individual ion channels on the neuronal activation function. We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal variability on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how variability and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic variability determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.Comment: 20 pages, 8 figure

    Human Fallopian Tube Mesenchymal Stromal Cells Enhance Bone Regeneration in a Xenotransplanted Model

    Get PDF
    We have recently reported that human fallopian tubes, which are discarded during surgical procedures of women submitted to sterilization or hysterectomies, are a rich source of human fallopian tube mesenchymal stromal cells (htMSCs). It has been previously shown that human mesenchymal stromal cells may be useful in enhancing the speed of bone regeneration. This prompted us to investigate whether htMSCs might be useful for the treatment of osteoporosis or other bone diseases, since they present a pronounced capacity for osteogenic differentiation in vitro. Based on this prior knowledge, our aim was to evaluate, in vivo, the osteogenic capacity of htMSCs to regenerate bone through an already described xenotransplantation model: nonimmunosuppressed (NIS) rats with cranial defects. htMSCs were obtained from five 30–50 years old healthy women and characterized by flow cytometry and for their multipotenciality in vitro capacity (osteogenic, chondrogenic and adipogenic differentiations). Two symmetric full-thickness cranial defects on each parietal region of seven NIS rats were performed. The left side (LS) of six animals was covered with CellCeram (Scaffdex)—a bioabsorbable ceramic composite scaffold that contains 60% hydroxyapatite and 40% β-tricalciumphosphate—only, and the right side (RS) with the CellCeram and htMSCs (106 cells/scaffold). The animals were euthanized at 30, 60 and 90 days postoperatively and cranial tissue samples were taken for histological analysis. After 90 days we observed neobone formation in both sides. However, in animals euthanized 30 and 60 days after the procedure, a mature bone was observed only on the side with htMSCs. PCR and immunofluorescence analysis confirmed the presence of human DNA and thus that human cells were not rejected, which further supports the imunomodulatory property of htMSCs. In conclusion, htMSCs can be used successfully to enhance bone regeneration in vivo, opening a new field for future treatments of osteoporosis and bone reconstruction

    Sleep assessment in a population-based study of chronic fatigue syndrome

    Get PDF
    BACKGROUND: Chronic fatigue syndrome (CFS) is a disabling condition that affects approximately 800,000 adult Americans. The pathophysiology remains unknown and there are no diagnostic markers or characteristic physical signs or laboratory abnormalities. Most CFS patients complain of unrefreshing sleep and many of the postulated etiologies of CFS affect sleep. Conversely, many sleep disorders present similarly to CFS. Few studies characterizing sleep in unselected CFS subjects have been published and none have been performed in cases identified from population-based studies. METHODS: The study included 339 subjects (mean age 45.8 years, 77% female, 94.1% white) identified through telephone screen in a previously described population-based study of CFS in Wichita, Kansas. They completed questionnaires to assess fatigue and wellness and 2 self-administered sleep questionnaires. Scores for five of the six sleep factors (insomnia/hypersomnia, non-restorative sleep, excessive daytime somnolence, sleep apnea, and restlessness) in the Centre for Sleep and Chronobiology's Sleep Assessment Questionnaire(© )(SAQ(©)) were dichotomized based on threshold. The Epworth Sleepiness Scale score was used as a continuous variable. RESULTS: 81.4% of subjects had an abnormality in at least one SAQ(© )sleep factor. Subjects with sleep factor abnormalities had significantly lower wellness scores but statistically unchanged fatigue severity scores compared to those without SAQ(© )abnormality. CFS subjects had significantly increased risk of abnormal scores in the non-restorative (adjusted odds ratio [OR] = 28.1; 95% confidence interval [CI]= 7.4–107.0) and restlessness (OR = 16.0; 95% CI = 4.2–61.6) SAQ(© )factors compared to non-fatigued, but not for factors of sleep apnea or excessive daytime somnolence. This is consistent with studies finding that, while fatigued, CFS subjects are not sleepy. A strong correlation (0.78) of Epworth score was found only for the excessive daytime somnolence factor. CONCLUSIONS: SAQ(© )factors describe sleep abnormalities associated with CFS and provide more information than the Epworth score. Validation of these promising results will require formal polysomnographic sleep studies

    Understanding the market for justice

    Get PDF

    Rapid Reversal of Chondroitin Sulfate Proteoglycan Associated Staining in Subcompartments of Mouse Neostriatum during the Emergence of Behaviour

    Get PDF
    BACKGROUND: The neostriatum, the mouse homologue of the primate caudate/putamen, is the input nucleus for the basal ganglia, receiving both cortical and dopaminergic input to each of its sub-compartments, the striosomes and matrix. The coordinated activation of corticostriatal pathways is considered vital for motor and cognitive abilities, yet the mechanisms which underlie the generation of these circuits are unknown. The early and specific targeting of striatal subcompartments by both corticostriatal and nigrostriatal terminals suggests activity-independent mechanisms, such as axon guidance cues, may play a role in this process. Candidates include the chondroitin sulfate proteoglycan (CSPG) family of glycoproteins which have roles not only in axon guidance, but also in the maturation and stability of neural circuits where they are expressed in lattice-like perineuronal nets (PNNs). METHODOLOGY/PRINCIPAL FINDINGS: The expression of CSPG-associated structures and PNNs with respect to neostriatal subcompartments has been examined qualitatively and quantitatively using double-labelling for Wisteria floribunda agglutinin (WFA), and the mu-opioid receptor (muOR), a marker for striosomes, at six postnatal ages in mice. We find that at the earliest ages (postnatal day (P)4 and P10), WFA-positive clusters overlap preferentially with the striosome compartment. By P14, these clusters disappear. In contrast, PNNs were first seen at P10 and continued to increase in density and spread throughout the caudate/putamen with maturation. Remarkably, the PNNs overlap almost exclusively with the neostriatal matrix. CONCLUSIONS/SIGNIFICANCE: This is the first description of a reversal in the distribution of CSPG associated structures, as well as the emergence and maintenance of PNNs in specific subcompartments of the neostriatum. These results suggest diverse roles for CSPGs in the formation of functional corticostriatal and nigrostriatal connectivity within the striosome and matrix compartments of the developing caudate/putamen

    A Cholinergic-Regulated Circuit Coordinates the Maintenance and Bi-Stable States of a Sensory-Motor Behavior during Caenorhabditis elegans Male Copulation

    Get PDF
    Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components

    KV7/KCNQ Channels Are Functionally Expressed in Oligodendrocyte Progenitor Cells

    Get PDF
    Background: KV7/KCNQ channels are widely expressed in neurons and they have multiple important functions, including control of excitability, spike afterpotentials, adaptation, and theta resonance. Mutations in KCNQ genes have been demonstrated to associate with human neurological pathologies. However, little is known about whether K V7/KCNQ channels are expressed in oligodendrocyte lineage cells (OLCs) and what their functions in OLCs. Methods and Findings: In this study, we characterized KV7/KCNQ channels expression in rat primary cultured OLCs by RT-PCR, immunostaining and electrophysiology. KCNQ2-5 mRNAs existed in all three developmental stages of rat primary cultured OLCs. K V7/KCNQ proteins were also detected in oligodendrocyte progenitor cells (OPCs, early developmental stages of OLCs) of rat primary cultures and cortex slices. Voltage-clamp recording revealed that the IM antagonist XE991 significantly reduced KV7/KCNQ channel current (IK(Q)) in OPCs but not in differentiated oligodendrocytes. In addition, inhibition of K V7/KCNQ channels promoted OPCs motility in vitro. Conclusions: These findings showed that K V7/KCNQ channels were functionally expressed in rat primary cultured OLCs an

    Modeling linkage disequilibrium increases accuracy of polygenic risk scores

    Get PDF

    Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics

    Full text link
    • …
    corecore